Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review

2020 ◽  
Vol 117 ◽  
pp. 113798 ◽  
Author(s):  
N.L. Kazanskiy ◽  
S.N. Khonina ◽  
M.A. Butt
2020 ◽  
Vol 12 (1) ◽  
pp. 1 ◽  
Author(s):  
Muhammad Ali ALI Butt ◽  
Nikolay Kazanskiy

We studied the metal-insulator-metal square ring resonator design incorporated with nano-dots that serve to squeeze the surface plasmon wave in the cavity of the ring. The E-field enhances at the boundaries of the nano-dots providing a strong interaction of light with the surrounding medium. As a result, the sensitivity of the resonator is highly enhanced compared to the standard ring resonator design. The best sensitivity of 907 nm/RIU is obtained by placing seven nano-dots of radius 4 nm in all four sides of the ring with a period (ᴧ)= 3r. The proposed design will find applications in biomedical science as highly refractive index sensors. Full Text: PDF References:Z. Han, S. I. Bozhevolnyi. "Radiation guiding with surface plasmon polaritons", Rep. Prog. Phys. 76, 016402 (2013). [CrossRef]N.L. Kazanskiy, S.N. Khonina, M.A. Butt. "Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review", Physica E 117, 113798 (2020). [CrossRef]D.K. Gramotnev, S.I. Bozhevolnyi. "Plasmonics beyond the diffraction limit", Nat. Photonics 4, 83 (2010). [CrossRef]A.N.Taheri, H. Kaatuzian. "Design and simulation of a nanoscale electro-plasmonic 1 × 2 switch based on asymmetric metal–insulator–metal stub filters", Applied Optics 53, 28 (2014). [CrossRef]P. Neutens, L. Lagae, G. Borghs, P. V. Dorpe. "Plasmon filters and resonators in metal-insulator-metal waveguides", Optics Express 20, 4 (2012). [CrossRef]M.A. Butt, S.N. Khonina, N. L. Kazanskiy. "Metal-insulator-metal nano square ring resonator for gas sensing applications", Waves in Random and complex media [CrossRef]M.A.Butt, S.N.Khonina, N.L.Kazanskiy. "Hybrid plasmonic waveguide-assisted Metal–Insulator–Metal ring resonator for refractive index sensing", Journal of Modern Optics 65, 1135 (2018). [CrossRef]M.A.Butt, S.N. Khonina, N.L. Kazanskiy, "Highly sensitive refractive index sensor based on hybrid plasmonic waveguide microring resonator", Waves in Random and complex media [CrossRef]Y. Fang, M. Sun. "Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits", Light:Science & Applications 4, e294 (2015). [CrossRef]H. Lu, G.X. Wang, X.M. Liu. "Manipulation of light in MIM plasmonic waveguide systems", Chin Sci Bull [CrossRef]J.N. Anker et al. "Biosensing with plasmonic nanosensors", Nature Materials 7, 442 (2008). [CrossRef]M.A.Butt, S.N. Khonina, N.L. Kazanskiy. Journal of Modern Optics 66, 1038 (2019).[CrossRef]Z.-D. Zhang, H.-Y. Wang, Z.-Y. Zhang. "Fano Resonance in a Gear-Shaped Nanocavity of the Metal–Insulator–Metal Waveguide", Plasmonics 8,797 (2013) [CrossRef]Y. Yu, J. Si, Y. Ning, M. Sun, X. Deng. Opt. Lett. 42, 187 (2017) [CrossRef]B.H.Zhang, L-L. Wang, H-J. Li et al. "Two kinds of double Fano resonances induced by an asymmetric MIM waveguide structure", J. Opt. 18,065001 (2016) [CrossRef]X. Zhao, Z. Zhang, S. Yan. "Tunable Fano Resonance in Asymmetric MIM Waveguide Structure", Sensors 17, 1494 (2017) [CrossRef]J. Zhou et al. "Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity", AIP Advances 7, 015020 (2017) [CrossRef]V. Perumal, U. Hashim. "Advances in biosensors: Principle, architecture and applications", J. Appl. Biomed. 12, 1 (2014)[CrossRef]H.Gai, J. Wang , Q. Tian, "Modified Debye model parameters of metals applicable for broadband calculations", Appl. Opt. 46 (12), 2229 (2007) [CrossRef]


2020 ◽  
Vol 12 (3) ◽  
pp. 82
Author(s):  
Muhammad Ali Butt

In this paper, miniaturized design of a plasmonic Bragg grating filter is investigated via the finite element method (FEM). The filter is based on a plasmonic metal-insulator-metal waveguide deposited on a quartz substrate. The corrugated Bragg grating designed for near-infrared wavelength range is structured on both sides of the waveguide. The spectral characteristics of the filter are studied by varying the geometric parameters of the filter design. As a result, the maximum ER and bandwidth of 36.2 dB and 173 nm is obtained at λBragg=976 nm with a filter footprint of as small as 1.0 x 8.75 µm2, respectively. The ER and bandwidth can be further improved by increasing the number of grating periods and the strength of the grating, respectively. Moreover, the Bragg grating structure is quite receptive to the refractive index of the medium. These features allow the employment of materials such as polymers in the metal-insulator-metal waveguide which can be externally tuned or it can be used for refractive index sensing applications. The sensitivity of the proposed Bragg grating structure can offer a sensitivity of 950 nm/RIU. We believe that the study presented in this paper provides a guideline for the realization of small footprint plasmonic Bragg grating structures which can be employed in filter and refractive index sensing applications. Full Text: PDF ReferencesJ. W. Field et al., "Miniaturised, Planar, Integrated Bragg Grating Spectrometer", 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 2019, CrossRef L. Cheng, S. Mao, Z. Li, Y. Han, H.Y. Fu, "Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues", Micromachines, 11, 666 (2020). CrossRef J. Missinne, N. T. Beneitez, M-A. Mattelin, A. Lamberti, G. Luyckx, W. V. Paepegem, G. V. Steenberge, "Bragg-Grating-Based Photonic Strain and Temperature Sensor Foils Realized Using Imprinting and Operating at Very Near Infrared Wavelengths", Sensors, 18, 2717 (2018). CrossRef M. A. Butt, S.N. Khonina, N.L. Kazanskiy, "Numerical analysis of a miniaturized design of a Fabry–Perot resonator based on silicon strip and slot waveguides for bio-sensing applications", Journal of Modern Optics, 66, 1172-1178 (2019). CrossRef H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, X. Jiang, "Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide", Optics Letters, 41, 2450 (2016). CrossRef M. A. Butt, S.N. Khonina, N.L. Kazanskiy, "Optical elements based on silicon photonics", Computer Optics, 43, 1079-1083 (2019). CrossRef N. L. Kazanskiy, S.N. Khonina, M.A. Butt, "Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review", Physica E, 117, 113798 (2020). CrossRef L. Lu et al, "Mode-Selective Hybrid Plasmonic Bragg Grating Reflector", IEEE Photonics Technology Letters, 22, 1765-1767 (2012). CrossRef R. Negahdari, E. Rafiee, F. Emami, "Design and simulation of a novel nano-plasmonic split-ring resonator filter", Journal of Electromagnetic Waves and Applications, 32, 1925-1938 (2018). CrossRef M. Janfaza, M. A. Mansouri-Birjandi, "Tunable plasmonic band-pass filter based on Fabry–Perot graphene nanoribbons", Applied Physics B, 123, 262 (2017). CrossRef C. Wu, G. Song, L. Yu, J.H. Xiao, "Tunable narrow band filter based on a surface plasmon polaritons Bragg grating with a metal–insulator–metal waveguide", Journal of Modern Optics, 60, 1217-1222 (2013). CrossRef J. Zhu, G. Wang, "Sense high refractive index sensitivity with bragg grating and MIM nanocavity", Results in Physics, 15, 102763 (2019). CrossRef Y. Binfeng, H. Guohua, C. Yiping, "Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating", Optics Express, 22, 28662-28670 (2014). CrossRef A.D. Simard, Y. Painchaud, S. Larochelle, "Small-footprint integrated Bragg gratings in SOI spiral waveguides", International Quantum Electronics Conference Lasers and Electro-Optics Europe, IEEE, Munich, Germany (2013). CrossRef C. Klitis, G. Cantarella, M. J. Strain, M. Sorel, "High-extinction-ratio TE/TM selective Bragg grating filters on silicon-on-insulator", Optics Letters, 42, 3040 (2017). CrossRef J. Ctyroky et al., "Design of narrowband Bragg spectral filters in subwavelength grating metamaterial waveguides", Optics Express, 26, 179 (2018). CrossRef M.A. Butt, N.L. Kazanskiy, S.N. Khonina, "Hybrid plasmonic waveguide race-track µ-ring resonator: Analysis of dielectric and hybrid mode for refractive index sensing applications", Laser Phys., 30, 016202 (2020). CrossRef M. A. Butt, N.L. Kazanskiy, S.N. Khonina, "Label-free detection of ambient refractive index based on plasmonic Bragg gratings embedded resonator cavity sensor", Journal of Modern Optics, 66, 1920-1925 (2019). CrossRef N. L. Kazanskiy, M.A. Butt, Photonics Letters of Poland, 12, 1-3 (2020). CrossRef Z. Guo, K. Wen, Q. Hu, W. Lai, J. Lin, Y. Fang, "Plasmonic Multichannel Refractive Index Sensor Based on Subwavelength Tangent-Ring Metal–Insulator–Metal Waveguide", Sensors, 18, 1348 (2018). CrossRef


2020 ◽  
Vol 12 (3) ◽  
pp. 88
Author(s):  
Muhammad Ali Butt ◽  
Nikolai Lvovich Kazansky

We presented a numerical investigation of a metamaterial narrowband perfect absorber conducted via a finite element method based on commercially available COMSOL software. The periodic array of silicon meta-atoms (MAs) are placed on 80 nm thick gold layer. The broadband light at normal incidence is blocked by the gold layer and silicon MAs are used to excite the surface plasmon by scattering light through it. Maximum absorption of 95.7 % is obtained at the resonance wavelength of 1137.5 nm due to the perfect impedance matching of the electric and magnetic dipoles. The absorption is insensitive to the wide-angle of incidence ranging from 0 to 80 degrees. We believe that the proposed metamaterial device can be utilized in solar photovoltaic and biochemical sensing applications. Full Text: PDF ReferencesY. Cheng, X.S. Mao, C. Wu, L. Wu, R.Z. Gong, "Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing", Optical Materials, 53, 195-200 (2016). CrossRef S. S. Mirshafieyan, D.A. Gregory, "Electrically tunable perfect light absorbers as color filters and modulators", Scientific Reports,8, 2635 (2018). CrossRef D.M. Nguyen, D. Lee, J. Rho, "Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths", Scientific Reports, 7, 2611 (2017). CrossRef Y. Sun, Y. Ling, T. Liu, L. Huang, "Electro-optical switch based on continuous metasurface embedded in Si substrate", AIP Advances, 5, 117221 (2015). CrossRef H. Chu, Q. Li, B. Liu, J. Luo, S. Sun, Z. H. Hang, L. Zhou, Y. Lai, "A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials", Light: Science & Applications, 7, 50 (2018). CrossRef S. K. Patel, S. Charola, J. Parmar, M. Ladumor, "Broadband metasurface solar absorber in the visible and near-infrared region", Materials Research Express, 6, 086213 (2019). CrossRef Q. Qian, S. Ti, C. Wang, "All-dielectric ultra-thin metasurface angular filter", Optics Letters, 44, 3984 (2019). CrossRef P. Yu et al., "Broadband Metamaterial Absorbers", Advanced Optical Materials, 7, 1800995 (2019). CrossRef Y. J. Kim et al., "Flexible ultrathin metamaterial absorber for wide frequency band, based on conductive fibers", Science and Technology of advanced materials, 19, 711-717 (2018). CrossRef N.L. Kazanskiy, S.N. Khonina, M.A. Butt, "Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review", Physica E, 117, 113798 (2020). CrossRef H. E. Nejad, A. Mir, A. Farmani, "Supersensitive and Tunable Nano-Biosensor for Cancer Detection", IEEE Sensors Journal, 19, 4874-4881 (2019). CrossRef


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1419
Author(s):  
Muhammad A. Butt ◽  
Andrzej Kaźmierczak ◽  
Nikolay L. Kazanskiy ◽  
Svetlana N. Khonina

Herein, a novel cavity design of racetrack integrated circular cavity established on metal-insulator-metal (MIM) waveguide is suggested for refractive index sensing application. Over the past few years, we have witnessed several unique cavity designs to improve the sensing performance of the plasmonic sensors created on the MIM waveguide. The optimized cavity design can provide the best sensing performance. In this work, we have numerically analyzed the device design by utilizing the finite element method (FEM). The small variations in the geometric parameter of the device can bring a significant shift in the sensitivity and the figure of merit (FOM) of the device. The best sensitivity and FOM of the anticipated device are 1400 nm/RIU and ~12.01, respectively. We believe that the sensor design analyzed in this work can be utilized in the on-chip detection of biochemical analytes.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 125
Author(s):  
Shubin Yan ◽  
Haoran Shi ◽  
Xiaoyu Yang ◽  
Jing Guo ◽  
Wenchang Wu ◽  
...  

Due to their compact size and high sensitivity, plasmonic sensors have become a hot topic in the sensing field. A nanosensor structure, comprising the metal–insulator–metal (MIM) waveguide with a stub and a horizontal B-Type cavity, is designed as a refractive index sensor. The spectral characteristics of proposed structure are analyzed via the finite element method (FEM). The results show that there is a sharp Fano resonance profile, which is excited by a coupling between the MIM waveguide and the horizontal B-Type cavity. The normalized HZ field is affected by the difference value between the outer radii R1 and R2 of the semi-circle of the horizontal B-Type cavity greatly. The influence of every element of the whole system on sensing properties is discussed in depth. The sensitivity of the proposed structure can obtain 1548 nm/RIU (refractive index unit) with a figure of merit of 59. The proposed structure has potential in nanophotonic sensing applications.


Author(s):  
M.A. Butt ◽  
Andrzej Kaźmierczak ◽  
N. L. Kazanskiy ◽  
S. N. Khonina

Herein, a novel cavity design of racetrack integrated circular cavity established on metal-insulator-metal (MIM) waveguide is suggested for refractive index sensing application. Over the past few years, we have witnessed several unique cavity designs to improve the sensing performance of the plasmonic sensors created on the MIM waveguide. The optimized cavity design can provide the best sensing performance. In this work, we have numerically analyzed the device design by utilizing the finite element method (FEM). The small variations in the geometric parameter of the device can bring a significant shift in the sensitivity and FOM of the device. The best sensitivity and FOM of the anticipated device are 1400 nm/RIU and ~12.01, respectively. We believe that the sensor design analyzed in this work can be utilized in the on-chip detection of biochemical analytes.


Sign in / Sign up

Export Citation Format

Share Document