Deep soft-tissue massage applied to healthy calf muscle has no effect on passive mechanical properties: a randomized, single-blinded, cross-over study

Physiotherapy ◽  
2015 ◽  
Vol 101 ◽  
pp. e497-e498
Author(s):  
A. Gupta ◽  
D. Thomson ◽  
J. Crosbie
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 14599-14607
Author(s):  
Jianan Wu ◽  
Zhihui Qian ◽  
Ruixia Xu ◽  
Jing Liu ◽  
Luquan Ren ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mary Beth Wandel ◽  
Craig A. Bell ◽  
Jiayi Yu ◽  
Maria C. Arno ◽  
Nathan Z. Dreger ◽  
...  

AbstractComplex biological tissues are highly viscoelastic and dynamic. Efforts to repair or replace cartilage, tendon, muscle, and vasculature using materials that facilitate repair and regeneration have been ongoing for decades. However, materials that possess the mechanical, chemical, and resorption characteristics necessary to recapitulate these tissues have been difficult to mimic using synthetic resorbable biomaterials. Herein, we report a series of resorbable elastomer-like materials that are compositionally identical and possess varying ratios of cis:trans double bonds in the backbone. These features afford concomitant control over the mechanical and surface eroding degradation properties of these materials. We show the materials can be functionalized post-polymerization with bioactive species and enhance cell adhesion. Furthermore, an in vivo rat model demonstrates that degradation and resorption are dependent on succinate stoichiometry in the elastomers and the results show limited inflammation highlighting their potential for use in soft tissue regeneration and drug delivery.


1999 ◽  
Vol 48 (4) ◽  
pp. 1130-1132
Author(s):  
Tomoaki Horikawa ◽  
Kensuke Yonemura ◽  
Kimiaki Nishida ◽  
Toshitake Yakushiji ◽  
Teiji Kato ◽  
...  
Keyword(s):  

2022 ◽  
Author(s):  
Katarína Kacvinská ◽  
Martina Trávničková ◽  
Lucy Vojtová ◽  
Petr Poláček ◽  
Jana Dorazilová ◽  
...  

Abstract This study deals with cellulose derivatives in relation to the collagen fibrils in composite collagen-cellulose scaffolds for soft tissue engineering. Two types of cellulose, i.e., oxidized cellulose (OC) and carboxymethyl cellulose (CMC), were blended with collagen (Col) to enhance its elasticity, stability and sorptive biological properties, e.g. hemostatic and antibacterial features. The addition of OC supported the resistivity of the Col fibrils in a dry environment, while in a moist environment OC caused a radical drop. The addition of CMC reduced the mechanical strength of the Col fibrils in both environments. The elongation of the Col fibrils was increased by both types of cellulose derivatives in both environments, which is closely related to tissue like behaviour. In these various mechanical environments, the ability of human adipose-derived stem cells (hADSCs) to adhere and proliferate was significantly greater in the Col and Col/OC scaffolds than in the Col/CMC scaffold. This is explained by deficient mechanical support and loss of stiffness due to the high swelling capacity of CMC. Although Col/OC and Col/CMC acted differently in terms of mechanical properties, both materials were observed to be cytocompatible, with varying degrees of further support for cell adhesion and proliferation. While Col/OC can serve as a scaffolding material for vascular tissue engineering and for skin tissue engineering, Col/CMC seems to be more suitable for moist wound healing, e.g. as a mucoadhesive gel for exudate removal, since there was almost no cell adhesion.


1995 ◽  
Vol 14 (11) ◽  
pp. 1002-1004 ◽  
Author(s):  
P. Kragsbjerg ◽  
T. Norén ◽  
B. Söderquist

Sign in / Sign up

Export Citation Format

Share Document