Transient thin film flow of nonlinear radiative Maxwell nanofluid over a rotating disk

2019 ◽  
Vol 383 (12) ◽  
pp. 1300-1305 ◽  
Author(s):  
Jawad Ahmed ◽  
Masood Khan ◽  
Latif Ahmad
2019 ◽  
Vol 9 (8) ◽  
pp. 1533 ◽  
Author(s):  
Zahir Shah ◽  
Abdullah Dawar ◽  
Poom Kumam ◽  
Waris Khan ◽  
Saeed Islam

Nanoscience can be stated as a superlative way of changing the properties of a working fluid. Heat transmission features during the flow of nanofluids are an imperative rule from the industrial and technological point of view. This article presents a thin film flow of viscous nanofluids over a horizontal rotating disk. The impact of non-linear thermal radiation and a uniform magnetic field is emphasized in this work. The governing equations were transformed and solved by the homotopy analysis method and the ND-Solve technique. Both analytical and numerical results are compared graphically and numerically, and excellent agreement was obtained. Skin friction and the Nusselt number were calculated numerically. It is concluded that the thin film thickness of nanofluids reduces with enhanced values of the magnetic parameter. In addition, the nanofluid temperature was augmented with increasing values of the thermal radiation parameter. The impact of emerging parameters on velocities and temperature profiles were obtainable through graphs and were deliberated on in detail.


Author(s):  
Latif Ahmad ◽  
Jawad Ahmed ◽  
Awais Ahmed

The thin film flow in nanotechnology is one of the most modern progresses in the study of thin films. This includes coating with nanocomposite materials, thus providing the materials improved mechanical properties due to a so-called size effect. The ultimate functional properties that can be gained are of high adherence, wear resistance, thermal conductivity, oxidation resistance, higher toughness and hardness. This article studies the transient motion of nanofluid thin film over a disk rotating with angular velocity inversely proportional to the time. The importance of Lorentz force arises due to the axial projection of magnetic flux is studied on thin film flow and heat transfer. Two active mechanisms of nanoparticles, namely thermophoresis and Brownian diffusion, are discussed using Buongiorno model. By adopting a similarity method, the velocity distribution thermal and concentration fields above the rotating disk are simulated numerically and assessed graphically. Numerical illustrations for nanofluid film thickness, skin friction and heat and mass transfer rates are depicted against the impacts of several influential parameters. Results highlight that film thickness reduces with unsteadiness and rotation parameters. The results also spectacle that the involvement of a magnetic beam reduces the velocity of nanofluid film. Further, it is observed that thermophoresis and Brownian motion effects make a better influence in enhancing the heat transfer rate.


2013 ◽  
Vol 19 (4) ◽  
pp. 513-527
Author(s):  
Kamran Alam ◽  
M.T. Rahim ◽  
S. Islam ◽  
A.M. Sidiqqui

In this study, the pseudo plastic model is used to obtain the solution for the steady thin film flow on the outer surface of long vertical cylinder for lifting and drainage problems. The non-linear governing equations subject to appropriate boundary conditions are solved analytically for velocity profiles by a modified homotopy perturbation method called the Optimal Homotopy Asymptotic method. Expressions for the velocity profile, volume flux, average velocity, shear stress on the cylinder, normal stress differences, force to hold the vertical cylindrical surface in position, have been derived for both the problems. For the non-Newtonian parameter ?=0, we retrieve Newtonian cases for both the problems. We also plotted and discussed the affect of the Stokes number St, the non-Newtonian parameter ? and the thickness ? of the fluid film on the fluid velocities.


Author(s):  
Farhan Ahmad ◽  
Taza Gul ◽  
Imran Khan ◽  
Anwar Saeed ◽  
Mahmoud Mohamed Selim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document