Shocks in an electronegative plasma with Boltzmann negative ions and κ-distributed trapped electrons

2019 ◽  
Vol 383 (18) ◽  
pp. 2176-2184 ◽  
Author(s):  
Shaukat Ali Shan ◽  
Nadia Imtiaz
2020 ◽  
Vol 75 (12) ◽  
pp. 999-1007
Author(s):  
Rustam Ali ◽  
Anjali Sharma ◽  
Prasanta Chatterjee

AbstractHead-on interaction of four dust ion acoustic (DIA) solitons and the statistical properties of the wave field due to head-on interaction of solitons moving in opposite direction is studied in the framework of two Korteweg de Vries (KdV) equations. The extended Poincaré–Lighthill–Kuo (PLK) method is applied to obtain two opposite moving KdV equations from an unmagnetized four component plasma model consisting of Maxwellian negative ions, cold mobile positive ions, κ-distributed electrons and positively charged dust grains. Hirota’s bilinear method is adopted to obtain two-soliton solutions of both the KdV equations and accordingly act of soliton turbulence is presented due to head-on collision of four solitons. The amplitude and shape of the resultant wave profile at the point of strongest interaction are obtained. To see the effect of head-on collision on the statistical properties of wave field the first four moments are computed. It is observed that the head-on collision has no effect on the first integral moment while the second, third and fourth moments increase in the dominant interaction region of four solitons, which is a clean indication of soliton turbulence.


2010 ◽  
Vol 76 (3-4) ◽  
pp. 409-418 ◽  
Author(s):  
A. A. MAMUN ◽  
K. S. ASHRAFI ◽  
M. G. M. ANOWAR

AbstractThe dust ion-acoustic solitary waves (SWs) in an unmagnetized dusty adiabatic electronegative plasma containing inertialess adiabatic electrons, inertial single charged adiabatic positive and negative ions, and stationary arbitrarily (positively and negatively) charged dust have been theoretically studied. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits an SW solution. The combined effects of the adiabaticity of plasma particles, inertia of positive or negative ions, and presence of positively or negatively charged dust, which are found to significantly modify the basic features of small but finite-amplitude dust-ion-acoustic SWs, are explicitly examined. The implications of our results in space and laboratory dusty electronegative plasmas are briefly discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
I. S. Elkamash ◽  
I. Kourakis

AbstractA one-dimensional multifluid hydrodynamic model has been adopted as basis for an investigation of the role of suprathermal electrons on the wave breaking amplitude limit for electrostatic excitations propagating in an electronegative plasma. A three-component plasma is considered, consisting of two inertial cold ion populations of opposite signs, evolving against a uniform background of (non-Maxwellian) electrons. A kappa-type (non-Maxwellian) distribution function is adopted for the electrons. By employing a traveling wave approximation, the first integral for the fluid-dynamical system has been derived, in the form of a pseudo-energy balance equation, and analyzed. The effect of intrinsic plasma parameters (namely the ion density ratio, the ion mass ratio, and the superthermal index of the nonthermal electrons) on the wave breaking amplitude limit is explored, by analyzing the phase space topology of the associated pseudopotential function. Our results are relevant to particle acceleration in Space environments and to recent experiments based on plasma-based accelerator schemes, where the simultaneous presence of negative ions and nonthermal electrons may be observed.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Alvaro H. Salas S ◽  
Jairo E. Castillo H ◽  
Darin J. Mosquera P

In this paper, a new analytical solution to the undamped Helmholtz oscillator equation in terms of the Weierstrass elliptic function is reported. The solution is given for any arbitrary initial conditions. A comparison between our new solution and the numerical approximate solution using the Range Kutta approach is performed. We think that the methodology employed here may be useful in the study of several nonlinear problems described by a differential equation of the form z ″ = F z in the sense that z = z t . In this context, our solutions are applied to some physical applications such as the signal that can propagate in the LC series circuits. Also, these solutions were used to describe and investigate some oscillations in plasma physics such as oscillations in electronegative plasma with Maxwellian electrons and negative ions.


2012 ◽  
Vol 79 (2) ◽  
pp. 233-238 ◽  
Author(s):  
N. ROY ◽  
S. S. DUHA ◽  
A. A. MAMUN

AbstractThe basic features of the nonlinear waves, which are associated with positive ion dynamics and dust charge fluctuation, have been investigated by employing the reductive perturbation method in a dusty electronegative plasma containing Boltzmann electrons, vortex-like negative ions, mobile positive ions, and charge fluctuating stationary dust (negatively charged). It has been observed that the basic features of the nonlinear waves (viz. amplitude, width, speed, etc.) in the plasma system under consideration have been significantly modified by the trapping parameter (introduced for vortex-like distribution of negative ions). The implications of the results (obtained from this investigation) in space and laboratory experiments have been briefly discussed.


2020 ◽  
Vol 86 (3) ◽  
Author(s):  
Andrey V. Zobnin

A distribution of the electric potentials around a charged absorbing particle in a drifting weakly ionised collisional plasma with negative ions is calculated in the linear hydrodynamic approach. Coulomb-like asymptote of the electric potential around the absorbing particle deforms under the action of the negative ions’ flow and exhibits a valley profile along the flow behind the particle. The presence of the flowing negative ions can be conducive to string formation in the dust structures at relatively large pressures.


2009 ◽  
Author(s):  
B. M. Annaratone ◽  
J. E. Allen ◽  
Elizabeth Surrey ◽  
Alain Simonin

2005 ◽  
Vol 15 (08) ◽  
pp. 2623-2631 ◽  
Author(s):  
A. J. LICHTENBERG ◽  
A. M. MARAKHTANOV

Regular and chaotic relaxation oscillations in charged particle densities, light and floating potential are seen in low-pressure inductive discharges, in the transition between lower power capacitive operation and higher power inductive operation, if the plasma is electronegative, i.e. contains negative ions. As pressure or power is varied to cross a threshold, either from stable capacitive or stable inductive operation, the instability goes through a series of oscillatory, sometimes chaotic, states to large scale relaxation oscillations between higher and lower densities. A volume-averaged model, to describe the instability, contains time varying densities of charged species and temperature, indicating that the separation of the time scales of electron and negative ion motion is the driver of the complicated dynamics. The particle and energy balance equations are integrated to produce the dynamical behavior. A phase plane description of negative ions versus electrons is used to gain understanding of the instability. The theory shows that, depending on specific choices of parameters, as power is increased, the oscillations, born at Hopf bifurcation, can grow to a large amplitude relaxation oscillations, sometimes traversing chaotically between basins of attraction. The model qualitatively agrees with experimental observations which show the same range of behaviors, but with quantitative differences to be explained.


Sign in / Sign up

Export Citation Format

Share Document