scholarly journals Interpreting the charge-dependent flow and constraining the chiral magnetic wave with event shape engineering

2021 ◽  
pp. 136580
Author(s):  
Chun-Zheng Wang ◽  
Wen-Ya Wu ◽  
Qi-Ye Shou ◽  
Guo-Liang Ma ◽  
Yu-Gang Ma ◽  
...  
2016 ◽  
Vol 93 (4) ◽  
Author(s):  
J. Adam ◽  
D. Adamová ◽  
M. M. Aggarwal ◽  
G. Aglieri Rinella ◽  
M. Agnello ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Jeremy Baron ◽  
Daniel Reichelt ◽  
Steffen Schumann ◽  
Niklas Schwanemann ◽  
Vincent Theeuwes

Abstract Soft-drop grooming of hadron-collision final states has the potential to significantly reduce the impact of non-perturbative corrections, and in particular the underlying-event contribution. This eventually will enable a more direct comparison of accurate perturbative predictions with experimental measurements. In this study we consider soft-drop groomed dijet event shapes. We derive general results needed to perform the resummation of suitable event-shape variables to next-to-leading logarithmic (NLL) accuracy matched to exact next-to-leading order (NLO) QCD matrix elements. We compile predictions for the transverse-thrust shape accurate to NLO + NLL′ using the implementation of the Caesar formalism in the Sherpa event generator framework. We complement this by state-of-the-art parton- and hadron-level predictions based on NLO QCD matrix elements matched with parton showers. We explore the potential to mitigate non-perturbative corrections for particle-level and track-based measurements of transverse thrust by considering a wide range of soft-drop parameters. We find that soft-drop grooming indeed is very efficient in removing the underlying event. This motivates future experimental measurements to be compared to precise QCD predictions and employed to constrain non-perturbative models in Monte-Carlo simulations.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
D. Chicherin ◽  
J. M. Henn ◽  
E. Sokatchev ◽  
K. Yan

Abstract We present a method for calculating event shapes in QCD based on correlation functions of conserved currents. The method has been previously applied to the maximally supersymmetric Yang-Mills theory, but we demonstrate that supersymmetry is not essential. As a proof of concept, we consider the simplest example of a charge-charge correlation at one loop (leading order). We compute the correlation function of four electromagnetic currents and explain in detail the steps needed to extract the event shape from it. The result is compared to the standard amplitude calculation. The explicit four-point correlation function may also be of interest for the CFT community.


2019 ◽  
Vol 287 ◽  
pp. 3-7
Author(s):  
Yong Zhang ◽  
Qing Zhang ◽  
Yuan Tao Sun ◽  
Xian Rong Qin

The constitutive modeling of aluminum alloy under warm forming conditions generally considers the influence of temperature and strain rate. It has been shown by published flow stress curves of Al-Mg alloy that there is nearly no effect of strain rate on initial yield stress at various temperatures. However, most constitutive models ignored this phenomenon and may lead to inaccurate description. In order to capture the rate-independent initial yield stress, Peric model is modified via introducing plastic strain to multiply the strain rate, for eliminating the effect of strain rate when the plastic strain is zero. Other constitutive models including the Wagoner, modified Hockett–Sherby and Peric are also considered and compared. The results show that the modified Peric model could not only describe the temperature-and rate-dependent flow stress, but also capture the rate-independent initial yield stress, while the Wagoner, modified Hockett–Sherby and Peric model can only describe the temperature-and rate-dependent flow stress. Moreover, the modified Peric model could obtain proper static yield stress more naturally, and this property may have potential applications in rate-dependent simulations.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yong Zhou ◽  
Jishan Fan ◽  
Gen Nakamura

The initial-boundary value problem for the density-dependent flow of nematic crystals is studied in a 2-D bounded smooth domain. For the initial density away from vacuum, the existence and uniqueness is proved for the global strong solution with the large initial velocityu0and small∇d0. We also give a regularity criterion∇d∈Lp(0,T;Lq(Ω))  (2/q)+(2/p)=1, 2<q≤∞of the problem with the Dirichlet boundary conditionu=0,d=d0on∂Ω.


2003 ◽  
Vol 18 (9) ◽  
pp. 2039-2049 ◽  
Author(s):  
Jun Lu ◽  
Guruswami Ravichandran

An experimental study of the inelastic deformation of bulk metallic glass Zr41.2Ti13.8Cu12.5Ni10Be22.5 under multiaxial compression using a confining sleeve technique is presented. In contrast to the catastrophic shear failure (brittle) in uniaxial compression, the metallic glass exhibited large inelastic deformation of more than 10% under confinement, demonstrating the nature of ductile deformation under constrained conditions in spite of the long-range disordered characteristic of the material. It was found that the metallic glass followed a pressure (p) dependent Tresca criterion τ = τ0 + βp, and the coefficient of the pressure dependence β was 0.17. Multiple parallel shear bands oriented at 45° to the loading direction were observed on the surfaces of the deformed specimens and were responsible for the overall inelastic deformation.


Sign in / Sign up

Export Citation Format

Share Document