Micro-scale to nano-scale generators for energy harvesting: Self powered piezoelectric, triboelectric and hybrid devices

2019 ◽  
Vol 792 ◽  
pp. 1-33 ◽  
Author(s):  
Sundaram Chandrasekaran ◽  
Chris Bowen ◽  
James Roscow ◽  
Yan Zhang ◽  
Dinh Khoi Dang ◽  
...  
Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Feng Ru Fan ◽  
Wenzhuo Wu

Two-dimensional (2-D) materials of atomic thickness have attracted considerable interest due to their excellent electrical, optoelectronic, mechanical, and thermal properties, which make them attractive for electronic devices, sensors, and energy systems. Scavenging the otherwise wasted energy from the ambient environment into electrical power holds promise to address the emerging energy needs, in particular for the portable and wearable devices. The versatile properties of 2-D materials together with their atomically thin body create diverse possibilities for the conversion of ambient energy. The present review focuses on the recent key advances in emerging energy-harvesting devices based on monolayer 2-D materials through various mechanisms such as photovoltaic, thermoelectric, piezoelectric, triboelectric, and hydrovoltaic devices, as well as progress for harvesting the osmotic pressure and Wi-Fi wireless energy. The representative achievements regarding the monolayer heterostructures and hybrid devices are also discussed. Finally, we provide a discussion of the challenges and opportunities for 2-D monolayer material-based energy-harvesting devices in the development of self-powered electronics and wearable technologies.


Author(s):  
Prateek Asthana ◽  
Gargi Khanna

Background and Objective: Piezoelectric energy harvesting is an emergent research area for unobtrusive power supply for fully autonomous micro-scale devices. Method: The method of energy harvesting is to utilize waste ambient mechanical vibrations to generate electrical energy through piezoelectric effect. Results and Conclusion: The present work highlights the major advancement made in the field of micro-electromechanical systems based piezoelectric energy harvester to extract ambient vibrations and convert them into usable electric power. Present study explores energy harvesting approaches for portable electronics and self-powered wireless network nodes. The performance matrices like device physics, volume, operating frequencies, design and materials have been thoroughly analyzed in this work. Conventional cantilever fabrication steps have also been discussed. Finally, guidelines for future research and performance enhancements in the field of piezoelectric energy harvesting (PEH) at micro scale have been discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pashupati R. Adhikari ◽  
Nishat T. Tasneem ◽  
Russell C. Reid ◽  
Ifana Mahbub

AbstractIncreasing demand for self-powered wearable sensors has spurred an urgent need to develop energy harvesting systems that can reliably and sufficiently power these devices. Within the last decade, reverse electrowetting-on-dielectric (REWOD)-based mechanical motion energy harvesting has been developed, where an electrolyte is modulated (repeatedly squeezed) between two dissimilar electrodes under an externally applied mechanical force to generate an AC current. In this work, we explored various combinations of electrolyte concentrations, dielectrics, and dielectric thicknesses to generate maximum output power employing REWOD energy harvester. With the objective of implementing a fully self-powered wearable sensor, a “zero applied-bias-voltage” approach was adopted. Three different concentrations of sodium chloride aqueous solutions (NaCl-0.1 M, NaCl-0.5 M, and NaCl-1.0 M) were used as electrolytes. Likewise, electrodes were fabricated with three different dielectric thicknesses (100 nm, 150 nm, and 200 nm) of Al2O3 and SiO2 with an additional layer of CYTOP for surface hydrophobicity. The REWOD energy harvester and its electrode–electrolyte layers were modeled using lumped components that include a resistor, a capacitor, and a current source representing the harvester. Without using any external bias voltage, AC current generation with a power density of 53.3 nW/cm2 was demonstrated at an external excitation frequency of 3 Hz with an optimal external load. The experimental results were analytically verified using the derived theoretical model. Superior performance of the harvester in terms of the figure-of-merit comparing previously reported works is demonstrated. The novelty of this work lies in the combination of an analytical modeling method and experimental validation that together can be used to increase the REWOD harvested power extensively without requiring any external bias voltage.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1561
Author(s):  
Hao Chen ◽  
Zhongnan Qian ◽  
Chengyin Liu ◽  
Jiande Wu ◽  
Wuhua Li ◽  
...  

Current measurement is a key part of the monitoring system for power transmission lines. Compared with the conventional current sensor, the distributed, self-powered and contactless current sensor has great advantages of safety and reliability. By integrating the current sensing function and the energy harvesting function of current transformer (CT), a time-multiplexed self-powered wireless sensor that can measure the power transmission line current is presented in this paper. Two operating modes of CT, including current sensing mode and energy harvesting mode, are analyzed in detail. Through the design of mode-switching circuit, harvesting circuit and measurement circuit are isolated using only one CT secondary coil, which eliminates the interference between energy harvesting and current measurement. Thus, the accurate measurement in the current sensing mode and the maximum energy collection in the energy harvesting mode are both realized, all of which simplify the online power transmission line monitoring. The designed time-multiplexed working mode allows the sensor to work at a lower transmission line current, at the expense of a lower working frequency. Finally, the proposed sensor is verified by experiments.


Nano Energy ◽  
2021 ◽  
pp. 105964
Author(s):  
Sugato Hajra ◽  
Venkateswaran Vivekananthan ◽  
Manisha Sahu ◽  
Gaurav Khandelwal ◽  
Nirmal Prashanth Maria Joseph Raj ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3151
Author(s):  
Shuo Yang ◽  
Bin Wu ◽  
Xiucheng Liu ◽  
Mingzhi Li ◽  
Heying Wang ◽  
...  

In this study, a novel piezoelectric energy harvester (PEH) based on the array composite spherical particle chain was constructed and explored in detail through simulation and experimental verification. The power test of the PEH based on array composite particle chains in the self-powered system was realized. Firstly, the model of PEH based on the composite spherical particle chain was constructed to theoretically realize the collection, transformation, and storage of impact energy, and the advantages of a composite particle chain in the field of piezoelectric energy harvesting were verified. Secondly, an experimental system was established to test the performance of the PEH, including the stability of the system under a continuous impact load, the power adjustment under different resistances, and the influence of the number of particle chains on the energy harvesting efficiency. Finally, a self-powered supply system was established with the PEH composed of three composite particle chains to realize the power supply of the microelectronic components. This paper presents a method of collecting impact energy based on particle chain structure, and lays an experimental foundation for the application of a composite particle chain in the field of piezoelectric energy harvesting.


Sign in / Sign up

Export Citation Format

Share Document