Immunolocalisation of cytokeratin 7 in human umbilical mesenchymal stem cells, umbilical vein endothelial cells and human uterine microvascular endothelial cells

Placenta ◽  
2014 ◽  
Vol 35 (9) ◽  
pp. A32-A33
Author(s):  
Neven Ebrahim ◽  
Azlina Razak ◽  
Jennifer Sedcole ◽  
Olivia Volk ◽  
Lopa Leach
2017 ◽  
Vol 12 (1) ◽  
pp. e130-e141 ◽  
Author(s):  
Alina Freiman ◽  
Yulia Shandalov ◽  
Dekel Rosenfeld ◽  
Erez Shor ◽  
Dror Ben-David ◽  
...  

1988 ◽  
Vol 60 (03) ◽  
pp. 463-467 ◽  
Author(s):  
Wolfgang Speiser ◽  
Elisabeth Anders ◽  
Bernd R Binder ◽  
Gert Müller-Berghaus

SummaryThe lysis of fibrin clots on the surface of cultured human omental tissue microvascular endothelial cells (HOTMEC) and cultured human umbilical vein endothelial cells (HUVEC) was studied. Fibrin clots were made by mixing fibrinogen, plasminogen and thrombin on the surface of both cell types. Clot lysis was seen only on the surface of HOTMEC, which were found to synthesize about 100-fold more tissue plasminogen activator (tPA) antigen than HUVEC. Clot lysis of HOTMEC could be blocked by anti-tPA IgG but was not affected by the incorporation of exogenous plasminogen activator (PAI) into the clot in concentrations (75 arbitrary units) exceeding the tPA activity (21 ± 2.5 IU) of the cells. Thus, it is likely that tPA secreted by HOTMEC is protected from inhibition by PAI in the presence of fibrin and endothelial cells. The stimulation of EC to release an excess of tPA over PAI, in contrast to the secretion of an excess of PAI over tPA found in unstimulated cells in the absence of fibrin, is obviously no prerequisite for the initiation of fibrinolysis on the surface of HOTMEC. As thrombin was used for clot formation, its influence on tPA and PAI synthesis of both cell types was investigated. In contrast to HOTMEC, which were not affected by Α-thrombin, HUVEC revealed a dose-dependent increase in tPA and PAI synthesis upon incubation with the enzyme. This increase in tPA production by HUVEC was not sufficient to lyse the clots within 48 hours. Furthermore, HUVEC. behaved differently towards thrombin as these cells in contrast to HOTMEC revealed the typical shape change reaction upon incubation with the enzyme


Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 327-333 ◽  
Author(s):  
Christopher John McCormick ◽  
Christopher I. Newbold ◽  
Anthony R. Berendt

A novel adhesive pathway that enhances the adhesion ofPlasmodium falciparum-infected erythrocytes (IEs) to endothelial cells has been identified. The sulfated glycoconjugates heparin, fucoidan, dextran sulfate 5000, and dextran sulfate 500 000 caused a dramatic increase in adhesion of IEs to human dermal microvascular endothelial cells. The same sulfated glycoconjugates had little effect on IE adhesion to human umbilical vein endothelial cells, a CD36-negative cell line. The effect was abolished by a monoclonal antibody directed against CD36, suggesting that enhanced adhesion to endothelium is dependent on CD36. No effect was observed on adhesion to purified platelet CD36 cells immobilized on plastic. The same sulfated glycoconjugates enhanced adhesion of infected erythrocytes to COS cells transfected with CD36, and this was inhibited by the CD36 monoclonal antibody. These findings demonstrate a role for sulfated glycoconjugates in endothelial adherence that may be important in determining the location and magnitude of sequestration through endogenous carbohydrates. In addition, they highlight possible difficulties that may be encountered from the proposed use of sulfated glycoconjugates as antiadhesive agents in patients with severe malaria.


Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 327-333 ◽  
Author(s):  
Christopher John McCormick ◽  
Christopher I. Newbold ◽  
Anthony R. Berendt

Abstract A novel adhesive pathway that enhances the adhesion ofPlasmodium falciparum-infected erythrocytes (IEs) to endothelial cells has been identified. The sulfated glycoconjugates heparin, fucoidan, dextran sulfate 5000, and dextran sulfate 500 000 caused a dramatic increase in adhesion of IEs to human dermal microvascular endothelial cells. The same sulfated glycoconjugates had little effect on IE adhesion to human umbilical vein endothelial cells, a CD36-negative cell line. The effect was abolished by a monoclonal antibody directed against CD36, suggesting that enhanced adhesion to endothelium is dependent on CD36. No effect was observed on adhesion to purified platelet CD36 cells immobilized on plastic. The same sulfated glycoconjugates enhanced adhesion of infected erythrocytes to COS cells transfected with CD36, and this was inhibited by the CD36 monoclonal antibody. These findings demonstrate a role for sulfated glycoconjugates in endothelial adherence that may be important in determining the location and magnitude of sequestration through endogenous carbohydrates. In addition, they highlight possible difficulties that may be encountered from the proposed use of sulfated glycoconjugates as antiadhesive agents in patients with severe malaria.


1998 ◽  
Vol 188 (9) ◽  
pp. 1751-1756 ◽  
Author(s):  
Jon Olav Utgaard ◽  
Frode L. Jahnsen ◽  
Arne Bakka ◽  
Per Brandtzaeg ◽  
Guttorm Haraldsen

Interleukin (IL)-8, a C-X-C chemokine, activates integrin-mediated adhesion of neutrophils. Presentation of IL-8 on the endothelial cell surface may promote leukocyte extravasation. We found that cultured human microvascular endothelial cells from the intestine (HIMEC) and from nasal polyps (PMEC), but not human umbilical vein endothelial cells (HUVEC), contained IL-8 in intracellular granules that coexpressed von Willebrand factor (vWf  ). This observation was corroborated by the immunohistochemical observation of double-positive granules (IL-8+vWf+) in vessels of small and large intestine, nasal mucosa, and skin, whereas umbilical cords revealed no endothelial IL-8. After treatment of HIMEC or PMEC with histamine or thrombin, a dramatic increase in supernatant IL-8 concentration was observed within 3 min, whereas no increase in IL-8 was detected in supernatants of identically treated HUVEC cultures. Histamine or thrombin treatment also caused IL-8–containing granules to rapidly disappear from HIMEC. In HUVEC, IL-8–containing granules were inducible by treatment with recombinant human IL-1β for 24 h; additional histamine treatment doubled IL-8 secretion from HUVEC in the same rapid manner observed for mucosal EC. These data suggested that IL-8 prestored in microvascular endothelial cells may provide a rapid pathway for specific activation of neutrophil adhesion at sites of acute inflammation.


Sign in / Sign up

Export Citation Format

Share Document