Salicylic acid confers resistance against broomrape in tomato through modulation of C and N metabolism

2020 ◽  
Vol 147 ◽  
pp. 322-335 ◽  
Author(s):  
Mahmoud M.Y. Madany ◽  
Wael A. Obaid ◽  
Wael Hozien ◽  
Hamada AbdElgawad ◽  
Badreldin A. Hamed ◽  
...  
Keyword(s):  
2021 ◽  
Author(s):  
Xiao Wang ◽  
Xiaoli Wei ◽  
Gaoyin Wu ◽  
Shengqun Chen

Abstract The study of plant responses to increases in atmospheric carbon dioxide (CO2) concentration is crucial to understand and to predict the effect of future global climate change on plant adaptation and evolution. Increasing amount of nitrogen (N) can promote the positive effect of CO2, while how N forms would modify the degree of CO2 effect is rarely studied. The aim of this study was to determine whether the amount and form of nitrogen (N) could mitigate the effects of elevated CO2 (eCO2) on enzyme activities related to carbon (C) and N metabolism, the C/N ratio, and growth of Phoebe bournei (Hemsl.) Y.C. Yang. One-year-old P. bournei seedlings were grown in an open-top air chamber under either an ambient CO2 (aCO2) (350 ± 70 μmol•mol−1) or an eCO2 (700 ± 10 μmol•mol−1) concentration and cultivated in soil treated with either moderate (0.8 g per seedling) or high applications (1.2 g per seedling) of nitrate or ammonium. In seedlings treated with a moderate level of nitrate, the activities of key enzymes involved in C and N metabolism (i.e., Rubisco, Rubisco activase and glutamine synthetase) were lower under eCO2 than under aCO2. By contrast, key enzyme activities (except GS) in seedlings treated with high nitrate or ammonium were not significantly different between aCO2 and eCO2 or higher under eCO2 than under aCO2. The C/N ratio of seedlings treated with moderate or high nitrate under eCO2was significantly changed compared with the seedlings grown under aCO2, whereas the C/N ratio of seedlings treated with ammonium was not significantly different between aCO2 and eCO2. Therefore, under eCO2, application of ammonium can be beneficial C and N metabolism and mitigate effects on the C/N ratio.


2015 ◽  
Vol 35 (1) ◽  
pp. 222-231 ◽  
Author(s):  
Qin Zhou ◽  
Yuanyuan Wu ◽  
Zheng Chonglan ◽  
Xinghua Xing ◽  
Lixin Liu ◽  
...  

2008 ◽  
Vol 133 (3) ◽  
pp. 525-543 ◽  
Author(s):  
Sarah Schriek ◽  
Eneas Aguirre-von-Wobeser ◽  
Anke Nodop ◽  
Anke Becker ◽  
Bas W. Ibelings ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
David Soba ◽  
Iker Aranjuelo ◽  
Bertrand Gakière ◽  
Françoise Gilard ◽  
Usue Pérez-López ◽  
...  

Soybean (Glycine max L.) future response to elevated [CO2] has been shown to differ when inoculated with B. japonicum strains isolated at ambient or elevated [CO2]. Plants, inoculated with three Bradyrhizobium strains isolated at different [CO2], were grown in chambers at current and elevated [CO2] (400 vs. 700 ppm). Together with nodule and leaf metabolomic profile, characterization of nodule N-fixation and exchange between organs were tested through 15N2-labeling analysis. Soybeans inoculated with SFJ14-36 strain (isolated at elevated [CO2]) showed a strong metabolic imbalance, at nodule and leaf levels when grown at ambient [CO2], probably due to an insufficient supply of N by nodules, as shown by 15N2-labeling. In nodules, due to shortage of photoassimilate, C may be diverted to aspartic acid instead of malate in order to improve the efficiency of the C source sustaining N2-fixation. In leaves, photorespiration and respiration were boosted at ambient [CO2] in plants inoculated with this strain. Additionally, free phytol, antioxidants, and fatty acid content could be indicate induced senescence due to oxidative stress and lack of nitrogen. Therefore, plants inoculated with Bradyrhizobium strain isolated at elevated [CO2] may have lost their capacity to form effective symbiosis at ambient [CO2] and that was translated at whole plant level through metabolic impairment.


Sign in / Sign up

Export Citation Format

Share Document