Salt stress on Lotus tenuis triggers cell wall polysaccharide changes affecting their digestibility by ruminants

Author(s):  
María Elena Vago ◽  
Gustavo Jaurena ◽  
Jose M. Estevez ◽  
Maria Agueda Castro ◽  
Jorge Alberto Zavala ◽  
...  
1993 ◽  
Vol 2 (7) ◽  
pp. 1106-1113 ◽  
Author(s):  
D. R. Rose ◽  
M. Przybylska ◽  
R. J. To ◽  
C. S. Kayden ◽  
E. Vorberg ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5957
Author(s):  
Hyun Jin Chun ◽  
Dongwon Baek ◽  
Byung Jun Jin ◽  
Hyun Min Cho ◽  
Mi Suk Park ◽  
...  

Although recent studies suggest that the plant cytoskeleton is associated with plant stress responses, such as salt, cold, and drought, the molecular mechanism underlying microtubule function in plant salt stress response remains unclear. We performed a comparative proteomic analysis between control suspension-cultured cells (A0) and salt-adapted cells (A120) established from Arabidopsis root callus to investigate plant adaptation mechanisms to long-term salt stress. We identified 50 differentially expressed proteins (45 up- and 5 down-regulated proteins) in A120 cells compared with A0 cells. Gene ontology enrichment and protein network analyses indicated that differentially expressed proteins in A120 cells were strongly associated with cell structure-associated clusters, including cytoskeleton and cell wall biogenesis. Gene expression analysis revealed that expressions of cytoskeleton-related genes, such as FBA8, TUB3, TUB4, TUB7, TUB9, and ACT7, and a cell wall biogenesis-related gene, CCoAOMT1, were induced in salt-adapted A120 cells. Moreover, the loss-of-function mutant of Arabidopsis TUB9 gene, tub9, showed a hypersensitive phenotype to salt stress. Consistent overexpression of Arabidopsis TUB9 gene in rice transgenic plants enhanced tolerance to salt stress. Our results suggest that microtubules play crucial roles in plant adaptation and tolerance to salt stress. The modulation of microtubule-related gene expression can be an effective strategy for developing salt-tolerant crops.


2021 ◽  
Vol 22 (6) ◽  
pp. 3077
Author(s):  
Zhenzhen Hao ◽  
Xiaolu Wang ◽  
Haomeng Yang ◽  
Tao Tu ◽  
Jie Zhang ◽  
...  

Plant cell wall polysaccharides (PCWP) are abundantly present in the food of humans and feed of livestock. Mammalians by themselves cannot degrade PCWP but rather depend on microbes resident in the gut intestine for deconstruction. The dominant Bacteroidetes in the gut microbial community are such bacteria with PCWP-degrading ability. The polysaccharide utilization systems (PUL) responsible for PCWP degradation and utilization are a prominent feature of Bacteroidetes. In recent years, there have been tremendous efforts in elucidating how PULs assist Bacteroidetes to assimilate carbon and acquire energy from PCWP. Here, we will review the PUL-mediated plant cell wall polysaccharides utilization in the gut Bacteroidetes focusing on cellulose, xylan, mannan, and pectin utilization and discuss how the mechanisms can be exploited to modulate the gut microbiota.


1995 ◽  
pp. 91-98 ◽  
Author(s):  
H. Nonami ◽  
K. Tanimoto ◽  
A. Tabuchi ◽  
T. Fukuyama ◽  
Y. Hashimoto

2005 ◽  
Vol 391 (2) ◽  
pp. 409-415 ◽  
Author(s):  
Anna Kärkönen ◽  
Alain Murigneux ◽  
Jean-Pierre Martinant ◽  
Elodie Pepey ◽  
Christophe Tatout ◽  
...  

UDPGDH (UDP-D-glucose dehydrogenase) oxidizes UDP-Glc (UDP-D-glucose) to UDP-GlcA (UDP-D-glucuronate), the precursor of UDP-D-xylose and UDP-L-arabinose, major cell wall polysaccharide precursors. Maize (Zea mays L.) has at least two putative UDPGDH genes (A and B), according to sequence similarity to a soya bean UDPGDH gene. The predicted maize amino acid sequences have 95% similarity to that of soya bean. Maize mutants with a Mu-element insertion in UDPGDH-A or UDPGDH-B were isolated (udpgdh-A1 and udpgdh-B1 respectively) and studied for changes in wall polysaccharide biosynthesis. The udpgdh-A1 and udpgdh-B1 homozygotes showed no visible phenotype but exhibited 90 and 60–70% less UDPGDH activity respectively than wild-types in a radiochemical assay with 30 μM UDP-glucose. Ethanol dehydrogenase (ADH) activity varied independently of UDPGDH activity, supporting the hypothesis that ADH and UDPGDH activities are due to different enzymes in maize. When extracts from wild-types and udpgdh-A1 homozygotes were assayed with increasing concentrations of UDP-Glc, at least two isoforms of UDPGDH were detected, having Km values of approx. 380 and 950 μM for UDP-Glc. Leaf and stem non-cellulosic polysaccharides had lower Ara/Gal and Xyl/Gal ratios in udpgdh-A1 homozygotes than in wild-types, whereas udpgdh-B1 homozygotes exhibited more variability among individual plants, suggesting that UDPGDH-A activity has a more important role than UDPGDH-B in UDP-GlcA synthesis. The fact that mutation of a UDPGDH gene interferes with polysaccharide synthesis suggests a greater importance for the sugar nucleotide oxidation pathway than for the myo-inositol pathway in UDP-GlcA biosynthesis during post-germinative growth of maize.


2018 ◽  
Vol 19 (11) ◽  
pp. 3412 ◽  
Author(s):  
Fenjuan Shao ◽  
Lisha Zhang ◽  
Iain Wilson ◽  
Deyou Qiu

Soil salinization is a matter of concern worldwide. It can eventually lead to the desertification of land and severely damage local agricultural production and the ecological environment. Betula halophila is a tree with high salt tolerance, so it is of importance to understand and discover the salt responsive genes of B. halophila for breeding salinity resistant varieties of trees. However, there is no report on the transcriptome in response to salt stress in B. halophila. Using Illumina sequencing platform, approximately 460 M raw reads were generated and assembled into 117,091 unigenes. Among these unigenes, 64,551 unigenes (55.12%) were annotated with gene descriptions, while the other 44.88% were unknown. 168 up-regulated genes and 351 down-regulated genes were identified, respectively. These Differentially Expressed Genes (DEGs) involved in multiple pathways including the Salt Overly Sensitive (SOS) pathway, ion transport and uptake, antioxidant enzyme, ABA signal pathway and so on. The gene ontology (GO) enrichments suggested that the DEGs were mainly involved in a plant-type cell wall organization biological process, cell wall cellular component, and structural constituent of cell wall molecular function. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment showed that the top-four enriched pathways were ‘Fatty acid elongation’, ‘Ribosome’, ‘Sphingolipid metabolism’ and ‘Flavonoid biosynthesis’. The expression patterns of sixteen DEGs were analyzed by qRT-PCR to verify the RNA-seq data. Among them, the transcription factor AT-Hook Motif Nuclear Localized gene and dehydrins might play an important role in response to salt stress in B. halophila. Our results provide an important gene resource to breed salt tolerant plants and useful information for further elucidation of the molecular mechanism of salt tolerance in B. halophila.


1995 ◽  
Vol 44 (Suppl. 1) ◽  
pp. 34-34
Author(s):  
HG Jung ◽  
TA Morrison ◽  
DR Buxton

1999 ◽  
Vol 37 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Gabriella Piro ◽  
Anna Montefusco ◽  
Daniela Pacoda ◽  
Giuseppe Dalessandro

Sign in / Sign up

Export Citation Format

Share Document