scholarly journals Alloy design strategies to increase strength and its trade-offs together

2020 ◽  
pp. 100720 ◽  
Author(s):  
Seung Zeon Han ◽  
Eun-Ae Choi ◽  
Sung Hwan Lim ◽  
Sangshik Kim ◽  
Jehyun Lee
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ikenna J. Okeke ◽  
Tia Ghantous ◽  
Thomas A. Adams

Abstract This study presents a novel design and techno-economic analysis of processes for the purification of captured CO2 from the flue gas of an oxy-combustion power plant fueled by petroleum coke. Four candidate process designs were analyzed in terms of GHG emissions, thermal efficiency, pipeline CO2 purity, CO2 capture rate, levelized costs of electricity, and cost of CO2 avoided. The candidates were a classic process with flue-gas water removal via condensation, flue-gas water removal via condensation followed by flue-gas oxygen removal through cryogenic distillation, flue-gas water removal followed by catalytic conversion of oxygen in the flue gas to water via reaction with hydrogen, and oxy-combustion in a slightly oxygen-deprived environment with flue-gas water removal and no need for flue gas oxygen removal. The former two were studied in prior works and the latter two concepts are new to this work. The eco-technoeconomic analysis results indicated trade-offs between the four options in terms of cost, efficiency, lifecycle greenhouse gas emissions, costs of CO2 avoided, technical readiness, and captured CO2 quality. The slightly oxygen-deprived process has the lowest costs of CO2 avoided, but requires tolerance of a small amount of H2, CO, and light hydrocarbons in the captured CO2 which may or may not be feasible depending on the CO2 end use. If infeasible, the catalytic de-oxygenation process is the next best choice. Overall, this work is the first study to perform eco-technoeconomic analyses of different techniques for O2 removal from CO2 captured from an oxy-combustion power plant.


Soil Research ◽  
2017 ◽  
Vol 55 (6) ◽  
pp. 473 ◽  
Author(s):  
David J. Pannell

Economic insights are crucial for making sound decisions about farm-level management of nitrogen and also about regional or national policy such as for water pollution. In the present review, key insights are presented from a large and diverse literature on the economics of nitrogen in agriculture and the economics of the consequences of nitrogen fertilisation. Issues covered include (1) the economics of nitrogen as an input to production, (2) nitrogen and economic risk at the farm level, (3) the economics of nitrogen fixation by legumes, (4) the existence of flat payoff functions, which often allow wide flexibility in decisions about nitrogen fertiliser rates, (5) explanations for over-application of nitrogen fertilisers by some farmers, and (6) the economics of nitrogen pollution at both the farm level and the policy level. Economics helps to explain farmer behaviour and to design strategies and policies that are more beneficial and more likely to be adopted and successfully implemented.


Author(s):  
Jinju Kim ◽  
Michael Saidani ◽  
Harrison M. Kim

Abstract With the rapid development of new technology and the growing global competition in industry, it is essential for companies to protect their sensitive product designs and technologies. To ensure that their systems are not exploited by third-party competitors or remanufacturers, original equipment manufacturers often apply physical attributes and/or reduce commonality within a product family to prevent easy reusing and recovering. Yet, these design strategies are key barriers to the sustainable recovery and recycling of products. To address these trade-offs, this paper proposes a stepwise methodology to identify the sustainable optimal product family architecture design while protecting intellectual property on sensitive parts or modules. The developed approach notably allows the selection of suitable and sustainable candidates to share among products, taking into account the cost-benefit of commonality within the product family. As such, it can be used as a decision support tool to help product designers identify appropriate product family architecture design and find candidates that can be shared within a product family by considering both sustainability and security parameters.


Author(s):  
Tao Chen ◽  
Yuan Yuan ◽  
Jiajia Wu ◽  
Tingting Liu ◽  
Xianhua Chen ◽  
...  

2018 ◽  
Vol 31 (4) ◽  
pp. 547-570
Author(s):  
Vladimir Milovanovic

The diverse application areas of emerging monolithic noncontact radar sensors that are able to measure object?s distance and velocity is expected to grow in the near future to scales that are now nearly inconceivable. A classical concept of frequency-modulated continuous-wave (FMCW) radar, tailored to operate in the millimeter-wave (mm-wave) band, is well-suited to be implemented in the baseline CMOS or BiCMOS process technologies. High volume production could radically cut the cost and decrease the form factor of such sensing devices thus enabling their omnipresence in virtually every field. This introductory paper explains the key concepts of mm-wave sensing starting from a chirp as an essential signal in linear FMCW radars. It further sketches the fundamental operating principles and block structure of contemporary fully integrated homodyne FMCW radars. Crucial radar parameters like the maximum unambiguously measurable distance and speed, as well as range and velocity resolutions are specified and derived. The importance of both beat tones in the intermediate frequency (IF) signal and the phase in resolving small spatial perturbations and obtaining the 2-D range-Doppler plot is pointed out. Radar system-level trade-offs and chirp/frame design strategies are explained. Finally, the nonideal and second-order effects are commented and the examples of practical FMCW transmitter and receiver implementations are summarized.


Author(s):  
Daniel Korff ◽  
Andrew M. Colclasure ◽  
Yeyoung Ha ◽  
Kandler Smith ◽  
Steven DeCaluwe

Abstract Here we present a 1D model of a Li-Sulfur battery with physically derived geometric parameters and thermodynamically consistent electrochemical kinetics. The approach enables straightforward comparison of proposed Li-S mechanisms and provides insights into the influence of polysulfide intermediates on battery discharge. Comparing predictions from multiple mechanisms demonstrates the need for both lithiated and non-lithiated polysulfide species, and highlights the challenge of developing parameter estimates for complex electrochemical mechanisms. The model is also used to explore cathode design strategies. Discharge performance and polysulfide concentrations for electrolyte/sulfur rations in the range 2 - 4 microleters per mg identifies trade-offs that limit battery energy and power density, and highlights the risk of polysulfide precipitation. New cathode and electrolyte approaches must limit polysulfide concentrations in the electrolyte, both to unlock better rate capabilities in Li-S technology and to prevent capacity fade due to polysulfide precipitation.


2021 ◽  
Vol 118 (25) ◽  
pp. e2101017118
Author(s):  
Zian Jia ◽  
Matheus C. Fernandes ◽  
Zhifei Deng ◽  
Ting Yang ◽  
Qiuting Zhang ◽  
...  

Biological systems have a remarkable capability of synthesizing multifunctional materials that are adapted for specific physiological and ecological needs. When exploring structure–function relationships related to multifunctionality in nature, it can be a challenging task to address performance synergies, trade-offs, and the relative importance of different functions in biological materials, which, in turn, can hinder our ability to successfully develop their synthetic bioinspired counterparts. Here, we investigate such relationships between the mechanical and optical properties in a multifunctional biological material found in the highly protective yet conspicuously colored exoskeleton of the flower beetle, Torynorrhina flammea. Combining experimental, computational, and theoretical approaches, we demonstrate that a micropillar-reinforced photonic multilayer in the beetle’s exoskeleton simultaneously enhances mechanical robustness and optical appearance, giving rise to optical damage tolerance. Compared with plain multilayer structures, stiffer vertical micropillars increase stiffness and elastic recovery, restrain the formation of shear bands, and enhance delamination resistance. The micropillars also scatter the reflected light at larger polar angles, enhancing the first optical diffraction order, which makes the reflected color visible from a wider range of viewing angles. The synergistic effect of the improved angular reflectivity and damage localization capability contributes to the optical damage tolerance. Our systematic structural analysis of T. flammea’s different color polymorphs and parametric optical and mechanical modeling further suggest that the beetle’s microarchitecture is optimized toward maximizing the first-order optical diffraction rather than its mechanical stiffness. These findings shed light on material-level design strategies utilized in biological systems for achieving multifunctionality and could thus inform bioinspired material innovations.


Author(s):  
Rafael Pereira Pires ◽  
Pascal Felber ◽  
Marcelo Pasin

This extended abstract summarises my PhD thesis, which explores design strategies for distributed systems that leverage trusted execution environments (TEEs). We aim at achieving better security and privacy guarantees while maintaining or improving performance in comparison to existing equivalent approaches. To that end, we propose a few original systems that take advantage of TEEs. On top of prototypes built with Intel software guard extensions (SGX) and deployed on real hardware, we evaluate their limitations and discuss the outcomes of such an emergent technology.


Sign in / Sign up

Export Citation Format

Share Document