Analysis of Ledinegg flow instability in natural circulation at supercritical pressure

2011 ◽  
Vol 53 (6) ◽  
pp. 775-779 ◽  
Author(s):  
Jiyang Yu ◽  
Shuwei Che ◽  
Ran Li ◽  
Bingxue Qi
2017 ◽  
Vol 98 ◽  
pp. 321-328 ◽  
Author(s):  
Shi Qi ◽  
Tao Zhou ◽  
Bing Li ◽  
Muhammad Ali Shahzad ◽  
Yaxiong Zou ◽  
...  

Author(s):  
Xiaoyan Wang ◽  
Siyang Huang ◽  
Wenxi Tian ◽  
Lie Chen ◽  
Suizheng Qiu ◽  
...  

In order to study the effect of rolling motion on flow instability of parallel rectangular channels of natural circulation, the natural circulation reactor simulation system is used for physical prototype. And theory analysis model of parallel rectangular channels of natural circulation system under rolling motion is established and coded by Fortran. The results of the program are verified to the experiments, and the results are in good agreement. The flow instability boundaries of different pressure under static and rolling motion are calculated respectively. The results show that: 1) under static condition, with the increase of the pressure, the instability boundary line changes, and the system becomes more stable; 2) under rolling conditions, the heating power of instability boundary decreases comparing to the stable conditions. The instability occurs earlier; 3) the stability of the system decreases with the increasing of rolling amplitude and frequency.


Author(s):  
Kun Cheng ◽  
Sichao Tan ◽  
Zheng Liu ◽  
Tao Meng

An experimental investigation was conducted in a natural circulation (NC) loop to study the characteristics of two-phase flow instability under low pressure condition. A 3 × 3 rod bundle channel was used as the test section. The effects of heating power, inlet subcooling degree and system pressure on the two-phase NC flow instability types and stable boundaries were studied. The experimental results show that three typical flow conditions can occur in rod bundle channel under NC condition, which are single-phase NC flow, subcooled boiling NC flow oscillation and density wave oscillations (DWO). The oscillation amplitude and period of DWO can be enlarged by increasing the heat flux. Increasing the inlet subcooling degree can increase the marginal heating power of flow instability in NC system. The occurrence of DWO can be suppressed by increasing the system pressure. The flow instability boundary presented by the subcooling number and phase change number was also obtained in present work.


2019 ◽  
Vol 147 ◽  
pp. 242-250 ◽  
Author(s):  
Zhen Zhang ◽  
Chenru Zhao ◽  
Xingtuan Yang ◽  
Peixue Jiang ◽  
Shengyao Jiang ◽  
...  

Author(s):  
Jingjing Li ◽  
Tao Zhou ◽  
Mingqiang Song ◽  
Yanping Huang

3-D simulation of supercritical water flow instability in parallel channels and a natural circulation loop are presented. Results are obtained for various heating powers. The results show that, in the natural circulation loop the steady state mass flow will firstly increase with the heating power and then decrease. And mass flow grows with the growing of the inlet temperature, decreases with the growing of system pressure. Under a large heat flux, the parallel channels will experience the flow instability of out phase mass flow oscillation. And the oscillation amplitude will grow with the growing of heating power. At last, the numerical simulations are validated by B.T. Swapnalee’s experience formula.


Author(s):  
Wenchao Zhang ◽  
Sichao Tan ◽  
Puzhen Gao

Two-phase natural circulation flow instability under rolling motion condition was studied experimentally and theoretically. Experimental data were analyzed with nonlinear time series analysis methods. The embedding dimension, correlation dimension and K2 entropy were determined based on phase space reconstruction theory and G-P method. The maximal Lyapunov exponent was calculated according to the methods of small data sets. The nonlinear features of the two phase flow instability under rolling motion were analyzed with the results of geometric invariants coupling with the experimental data. The results indicated that rolling motion strengthened the nonlinear characteristics of two phase flow instability. Some typical nonlinear phenomena such as period-doubling bifurcations and chaotic oscillations were found in different cases.


2016 ◽  
Vol 2 (3) ◽  
Author(s):  
Yuzhou Chen ◽  
Chunsheng Yang ◽  
Minfu Zhao ◽  
Keming Bi ◽  
Kaiwen Du

An experiment of natural circulation of supercritical water in parallel channels was performed in bare tubes of inner diameter 7.98 mm and heated length 1.3 m, covering the ranges of pressure of 24.7–25.5 MPa, mass flux of 400–1000  kg/m2 s, and heat flux of up to 1.83  MW/m2. When the heat flux reached 1.12  MW/m2, the outlet water temperature jumped from 325°C to 360°C, associated with a decrease in the flow rate and an initiation of dynamic instability. When the heat flux exceeded 1.39  MW/m2, the flow instability was stronger, and the flow rate increased in one channel and decreased in another one. Until the heat flux reached 1.61  MW/m2, the outlet water temperatures of two channels reached the pseudocritical point, and the flow rates of two channels tended to close each other. The experiment with a single heated channel was also performed for comparison. The measurements on the heat-transfer coefficients (HTCs) were compared to the calculations by the Bishop et al., Jackson’s, and Mokry et al. correlations, showing different agreements within various conditions.


Sign in / Sign up

Export Citation Format

Share Document