Small modular high temperature reactor optimisation – Part 1: A comparison between beryllium oxide and nuclear graphite in a small scale high temperature reactor

2019 ◽  
Vol 111 ◽  
pp. 223-232
Author(s):  
S. Atkinson ◽  
T.J. Abram ◽  
D. Litskevich ◽  
B. Merk
2016 ◽  
Vol 697 ◽  
pp. 797-806
Author(s):  
Junya Sumita ◽  
Taiju Shibata ◽  
Tatsuo Iyoku ◽  
Masahiro Ishihara ◽  
Tetsuo Nishihara

Nuclear energy is one of the most promising energy sources to satisfy energy security, environmental protection, and efficient supply. The High Temperature Gas-cooled Reactor (HTGR) has attractive inherent safety features and it can be used as many kinds of heat applications such as hydrogen production, electricity generation, process heat supply, district heating and desalination. Many countries, especially developing countries, show their interests in HTGR. Graphite materials are used for the core components of the HTGR. IG-110 graphite, fine-grained isotropic graphite, with high strength and high oxidation resistance is used in the High temperature Engineering Test Reactor (HTTR) of Japan Atomic Energy Agency (JAEA) and High Temperature Reactor-Pebble-bed Modules (HTR-PM) in China. IG-110 graphite is a major candidate for the core graphite components of the Very High Temperature Reactor (VHTR) which is one of HTGRs and one of the most promising candidates as the Generation-IV nuclear reactor systems. This paper describes design of core components of HTTR and R&D on nuclear graphite for HTGR. JAEA established the graphite structural design code and inspection standard of graphite to construct the HTTR. JAEA developed an in-service inspection method and a draft graphite structural design code for future HTGR on the basis of the HTTR technologies. Moreover, JAEA are now developing the design data base of IG-110 graphite and IG-430 graphite including irradiation data for HTGR.


Author(s):  
Motoo Fumizawa ◽  
Yuta Kosuge ◽  
Hidenori Horiuchi

This study presents a predictive thermal-hydraulic analysis with packed spheres in a nuclear gas-cooled reactor core. The predictive analysis considering the effects of high power density and the some porosity value were applied as a design condition for an Ultra High Temperature Reactor (UHTR). The thermal-hydraulic computer code was developed and identified as PEBTEMP. The highest outlet coolant temperature of 1316 °C was achieved in the case of an UHTREX at LASL, which was a small scale UHTR using hollow-rod as a fuel element. In the present study, the fuel was changed to a pebble type, a porous media. Several calculation based on HTGR-GT300 through GT600 were 4.8 w/cm3 through 9.6 w/cm3 respectively. As a result, the relation between the fuel temperature and the power density was obtained under the different system pressure and coolant outlet temperature. Finally, available design conditions are selected.


2007 ◽  
pp. 50-57
Author(s):  
Maria Samaras ◽  
Wolfgang Hoffelner ◽  
Chu Chun Fu ◽  
Michel Guttmann ◽  
Roger E. Stoller

2021 ◽  
Vol 151 ◽  
pp. 107983
Author(s):  
Lianjie Wang ◽  
Wei Sun ◽  
Bangyang Xia ◽  
Yang Zou ◽  
Rui Yan

2021 ◽  
Vol 13 (10) ◽  
pp. 5494
Author(s):  
Lucie Kucíková ◽  
Michal Šejnoha ◽  
Tomáš Janda ◽  
Jan Sýkora ◽  
Pavel Padevět ◽  
...  

Heating wood to high temperature changes either temporarily or permanently its physical properties. This issue is addressed in the present contribution by examining the effect of high temperature on residual mechanical properties of spruce wood, grounding on the results of full-scale fire tests performed on GLT beams. Given these tests, a computational model was developed to provide through-thickness temperature profiles allowing for the estimation of a charring depth on the one hand and on the other hand assigning a particular temperature to each specimen used subsequently in small-scale tensile tests. The measured Young’s moduli and tensile strengths were accompanied by the results from three-point bending test carried out on two groups of beams exposed to fire of a variable duration and differing in the width of the cross-section, b=100 mm (Group 1) and b=160 mm (Group 2). As expected, increasing the fire duration and reducing the initial beam cross-section reduces the residual bending strength. A negative impact of high temperature on residual strength has also been observed from simple tensile tests, although limited to a very narrow layer adjacent to the charring front not even exceeding a typically adopted value of the zero-strength layer d0=7 mm. On the contrary, the impact on stiffness is relatively mild supporting the thermal recovery property of wood.


2010 ◽  
Vol 76 (764) ◽  
pp. 383-385 ◽  
Author(s):  
Taiju SHIBATA ◽  
Junya SUMITA ◽  
Taiyo MAKITA ◽  
Takashi TAKAGI ◽  
Eiji KUNIMOTO ◽  
...  

2021 ◽  
Author(s):  
Radheesh Dhanasegaran ◽  
Antti Uusitalo ◽  
Teemu Turunen-Saaresti

Sign in / Sign up

Export Citation Format

Share Document