High species richness of Northwest Pacific deep-sea amphipods revealed through DNA barcoding

2019 ◽  
Vol 178 ◽  
pp. 102184 ◽  
Author(s):  
Anna Maria Jażdżewska ◽  
Tomasz Mamos
BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Alexander Ziegler ◽  
Christina Sagorny

Abstract Background In zoology, species descriptions conventionally rely on invasive morphological techniques, frequently leading to damage of the specimens and thus only a partial understanding of their structural complexity. More recently, non-destructive imaging techniques have successfully been used to describe smaller fauna, but this approach has so far not been applied to identify or describe larger animal species. Here, we present a combination of entirely non-invasive as well as minimally invasive methods that permit taxonomic descriptions of large zoological specimens in a more comprehensive manner. Results Using the single available representative of an allegedly novel species of deep-sea cephalopod (Mollusca: Cephalopoda), digital photography, standardized external measurements, high-field magnetic resonance imaging, micro-computed tomography, and DNA barcoding were combined to gather all morphological and molecular characters relevant for a full species description. The results show that this specimen belongs to the cirrate octopod (Octopoda: Cirrata) genus Grimpoteuthis Robson, 1932. Based on the number of suckers, position of web nodules, cirrus length, presence of a radula, and various shell characters, the specimen is designated as the holotype of a new species of dumbo octopus, G. imperator sp. nov. The digital nature of the acquired data permits a seamless online deposition of raw as well as derived morphological and molecular datasets in publicly accessible repositories. Conclusions Using high-resolution, non-invasive imaging systems intended for the analysis of larger biological objects, all external as well as internal morphological character states relevant for the identification of a new megafaunal species were obtained. Potentially harmful effects on this unique deep-sea cephalopod specimen were avoided by scanning the fixed animal without admixture of a contrast agent. Additional support for the taxonomic placement of the new dumbo octopus species was obtained through DNA barcoding, further underlining the importance of combining morphological and molecular datasets for a holistic description of zoological specimens.


2011 ◽  
Vol 8 (3) ◽  
pp. 397-400 ◽  
Author(s):  
Jake L. Snaddon ◽  
Edgar C. Turner ◽  
Tom M. Fayle ◽  
Chey V. Khen ◽  
Paul Eggleton ◽  
...  

The exceptionally high species richness of arthropods in tropical rainforests hinges on the complexity of the forest itself: that is, on features such as the high plant diversity, the layered nature of the canopy and the abundance and the diversity of epiphytes and litter. We here report on one important, but almost completely neglected, piece of this complex jigsaw—the intricate network of rhizomorph-forming fungi that ramify through the vegetation of the lower canopy and intercept falling leaf litter. We show that this litter-trapping network is abundant and intercepts substantial amounts of litter (257.3 kg ha −1 ): this exceeds the amount of material recorded in any other rainforest litter-trapping system. Experimental removal of this fungal network resulted in a dramatic reduction in both the abundance (decreased by 70.2 ± 4.1%) and morphospecies richness (decreased by 57.4 ± 5.1%) of arthropods. Since the lower canopy levels can contain the highest densities of arthropods, the proportion of the rainforest fauna dependent on the fungal networks is likely to be substantial. Fungal litter-trapping systems are therefore a crucial component of habitat complexity, providing a vital resource that contributes significantly to rainforest biodiversity.


Author(s):  
Jose L. Rueda ◽  
Manuel Fernández-Casado ◽  
Carmen Salas ◽  
Serge Gofas

The macrofauna of molluscs associated with soft bottoms in the Bay of Cádiz (southern Spain) was studied monthly from February 1994 to January 1996. The number of species (63) is high for a soft bottom and is related to environmental characteristics (growth of macrophytes) and the biogeographical setting of the studied area. Corbula gibba (∼90%) was the dominant species in this taxocoenosis together with the gastropod Nassarius pygmaeus and the bivalves Pandora inaequivalvis, Parvicardium exiguum and Macoma melo. The most frequent species during the two years was also the bivalve Corbula gibba (100%) followed by the gastropods Nassarius pygmaeus, Tricolia tenuis, Rissoa membranacea and the bivalve Macoma melo. Total abundance of the taxocoenosis in both years reached higher values in spring. The dynamics of the ecological indices such as diversity or evenness, and the species richness showed a similar pattern in both years, with low values of diversity and evenness together with high species richness in spring and summer months and the reverse in autumn and winter. The qualitative correspondence analysis of monthly samples shows an ordination related to seasonality in both studied years, however the values of Jaccard's coefficient do not indicate significant boundaries among the monthly samples. The quantitative correspondence analysis shows an ordination and grouping of samples related to the biology of species, particularly with the recruitment of C. gibba, the dominant species. The existence of similar trends in the structure of the taxocoenoses over both years, and the seasonality highlighted by the qualitative correspondence analysis, seems to indicate a certain stability of the ecosystem.


Taxon ◽  
2018 ◽  
Vol 67 (5) ◽  
pp. 836-870 ◽  
Author(s):  
Nicolas Magain ◽  
Camille Tniong ◽  
Trevor Goward ◽  
Dongling Niu ◽  
Bernard Goffinet ◽  
...  

2012 ◽  
Vol 33 (2) ◽  
pp. 181-197 ◽  
Author(s):  
Krzysztof Pabis ◽  
Jacek Siciński

Is polychaete diversity in the deep sublittoral of an Antarctic fiord related to habitat complexity?Seventy-six species of Polychaeta were found in 19 quantitative samples collected in the deep sublittoral (200-500 m) of Admiralty Bay (South Shetlands). Three assemblages were distinguished by similarity analysis (clustering, nMDS). The soft bottom in depths from 200 to 300m was strongly dominated byMaldane sarsi antarcticaand had very low species richness and diversity. The second assemblage was distinguished in the areas of the sea floor in the same depth range but with aggregations of Ascidiacea and Bryozoa. It was again characterized by high abundance ofMaldane sarsi antarctica, but showed significantly higher species richness and diversity. Diversity of polychaete feeding guilds was also high in these areas. This pattern was probably associated with an increased habitat complexity due to the presence of dense aggregations of large suspension feeders. High species richness and diversity was also noted in the third assemblage, associated with the deepest sublittoral (400-500 m) of Admiralty Bay. This is the area characterized by very stable environmental conditions, where the assemblage was dominated byTharyx cincinnatus, Sternaspissp.,Maldane sarsi antarctica, andAsychis amphiglypta.


2016 ◽  
Vol 16 (2) ◽  
Author(s):  
Carolina Moreno ◽  
Viviane G Ferro

Arctiinae are a species-rich subfamily of moth, with approximately 1,400 species in Brazil and 723 recorded in the Cerrado biome. A list of species of these moths was compiled during three years of sampling in four vegetation types within the Emas National Park. A total of 5,644 individuals belonging to 149 species were collected. About 67% of these species are new records for the Emas National Park, 31% for the State of Goiás and 9% for the Cerrado biome. Cerrado sensu stricto and semideciduous forests have higher species richness, followed by campo cerrado and campo sujo. The vegetation type with the highest number of exclusive species was the semideciduous forest, followed by cerrado sensu stricto, campo cerrado and campo sujo. The high species richness and the high proportion of new species records for Goiás and Cerrado reinforce the importance of the Emas National Park region as a center of diversity for this group of moths. The conservation of areas not yet cleared around the Park, including the creation of new protected areas, and the establishment of ecological corridors between these areas and the Park would be strategies to preserve the fauna of these moths.


Author(s):  
Natsumi Hookabe ◽  
Naoto Jimi ◽  
Hiroyuki Yokooka ◽  
Shinji Tsuchida ◽  
Yoshihiro Fujiwara

Abstract Lacydonia Marion & Bobretsky, 1875 is the sole genus in the family Lacydoniidae Bergström, 1914. We herein describe the new species of Lacydonia shohoensis sp. nov. from 2042-m deep bottoms at Shoho Seamount of the Nishi-Shichito Ridge, the Northwest Pacific Ocean. It is most similar to L. anapaulae Rizzo et al., 2016 in having a depression on the median anterior region and lacking lateral lobes on the posterior margin of prostomium whereas it is distinguished by possessing pygidium dorsally pigmented with three reddish spots and non-pigmented pygidial lateral cirri equally elongated.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2930 ◽  
Author(s):  
Temir A. Britayev ◽  
Elena Mekhova ◽  
Yury Deart ◽  
Daniel Martin

To assess whether closely related host species harbour similar symbiotic communities, we studied two polychaetes,Chaetopterussp. (n = 11) andChaetopteruscf.appendiculatus(n = 83) living in soft sediments of Nhatrang Bay (South China Sea, Vietnam). The former harboured the porcellanid crabsPolyonyxcf.heokandPolyonyxsp., the pinnotherid crabTetriassp. and the tergipedid nudibranchPhestillasp. The latter harboured the polynoid polychaeteOphthalmonoe pettiboneae, the carapid fishOnuxodon fowleriand the porcellanid crabEulenaios cometes, all of which, exceptO. fowleri, seemed to be specialized symbionts. The species richness and mean intensity of the symbionts were higher inChaetopterussp. than inC.cf.appendiculatus(1.8 and 1.02 species and 3.0 and 1.05 individuals per host respectively). We suggest that the lower density ofChaetopterussp. may explain the higher number of associated symbionts observed, as well as the 100% prevalence (69.5% inC.cf.appenciculatus). MostChaetopterussp. harboured two symbiotic species, which was extremely rare inC.cf.appendiculatus, suggesting lower interspecific interactions in the former. The crab and nudibranch symbionts ofChaetopterussp. often shared a host and lived in pairs, thus partitioning resources. This led to the species coexisting in the tubes ofChaetopterussp., establishing a tightly packed community, indicating high species richness and mean intensity, together with a low species dominance. In contrast, the aggressive, strictly territorial species associated withC.cf.appendiculatusestablished a symbiotic community strongly dominated by single species and, thus, low species richness and mean intensity. Therefore, we suggest that interspecific interactions are determining species richness, intensity and dominance, while intraspecific interactions are influencing only intensity and abundance. It is possible that species composition may have influenced the differences in community structure observed. We hypothesize that both host species could originally be allopatric. The evolutionary specialization of the symbiotic communities would occur in separated geographical areas, while the posterior disappearance of the existing geographical barriers would lead to the overlapped distribution.


Sign in / Sign up

Export Citation Format

Share Document