scholarly journals Global warming trend without the contributions from decadal variability of the Arctic Oscillation

Polar Science ◽  
2012 ◽  
Vol 6 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Yuta Nagato ◽  
H.L. Tanaka
2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Henriette Labsch ◽  
Dörthe Handorf ◽  
Klaus Dethloff ◽  
Michael V. Kurgansky

Atmospheric low-frequency variability and circulation regime behavior are investigated in the context of a quasi-geostrophic (QG) three-level T63 model of the wintertime atmospheric circulation over the Northern Hemisphere (NH). The model generates strong interannual and decadal variability, with the domination of the annular mode of variability. It successfully reproduces a satisfactory model climatology and the most important atmospheric circulation regimes. The positive phase of the Arctic Oscillation is a robust feature of the quasi-geostrophic T63 model. The model results based on QG dynamics underlie atmospheric regime behavior in the extratropical NH and suggest that nonlinear internal processes deliver significant contribution to the atmospheric climate variability on interannual and decadal timescales.


2007 ◽  
Vol 64 (3) ◽  
pp. 887-904 ◽  
Author(s):  
Mario Sempf ◽  
Klaus Dethloff ◽  
Dörthe Handorf ◽  
Michael V. Kurgansky

Abstract Dynamical mechanisms of atmospheric regime behavior are investigated in the context of a quasigeostrophic three-level T21 model of the wintertime atmospheric circulation over the Northern Hemisphere. The model, driven by realistic orography and using a thermal forcing determined by a newly developed tuning procedure, is shown to possess a reasonable climatology and to simulate the Arctic Oscillation quite realistically. It exhibits pronounced internally generated interannual and decadal variability and, in particular, circulation regimes that agree fairly well with observed ones. Two known hypotheses about the origin of regime behavior, as it occurs in the model herein are addressed: (i) multiple equilibria and (ii) chaotic itinerancy between attractor ruins. The first hypothesis is falsified at very high probability, while the second is likely to be true.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Weizheng Qu ◽  
Fei Huang ◽  
Jinping Zhao ◽  
Ling Du ◽  
Yong Cao

AbstractThe parasol effect of volcanic dust and aerosol caused by volcanic eruption results in the deepening and strengthening of the Arctic vortex system, thus stimulating or strengthening the Arctic Oscillation (AO). Three of the strongest AOs in more than a century have been linked to volcanic eruptions. Every significant fluctuation of the AO index (AOI = ΔH_middle latitudes − ΔH_Arctic) for many years has been associated with a volcanic eruption. Volcanic activity occurring at different locations in the Arctic vortex circulation will exert different effects on the polar vortex.


2021 ◽  
pp. 5-16
Author(s):  
V. N. Kryjov ◽  

The 2019/2020 wintertime (December–March) anomalies of sea level pressure, temperature, and precipitation are analyzed. The contribution of the 40-year linear trend in these parameters associated with global climate change and of the interannual variability associated with the Arctic Oscillation (AO) is assessed. In the 2019/2020 winter, extreme zonal circulation was observed. The mean wintertime AO index was 2.20, which ranked two for the whole observation period (started in the early 20th century) and was outperformed only by the wintertime index of 1988/1989. It is shown that the main contribution to the 2019/2020 wintertime anomalies was provided by the AO. A noticeable contribution of the trend was observed only in the Arctic. Extreme anomalies over Northern Eurasia were mainly associated with the AO rather than the trend. However, the AO-related anomalies, particularly air temperature anomalies, were developing against the background of the trend-induced increased mean level.


Sign in / Sign up

Export Citation Format

Share Document