Relaxations and thermal stability of low molecular weight predominantly isotactic metallocene and Ziegler–Natta polypropylene

2004 ◽  
Vol 85 (2) ◽  
pp. 873-882 ◽  
Author(s):  
J.M. Gómez-Elvira ◽  
P. Tiemblo ◽  
M. Elvira ◽  
L. Matisova-Rychla ◽  
J. Rychly
1978 ◽  
Vol 14 (7) ◽  
pp. 536-540
Author(s):  
I. M. Tiunova ◽  
D. E. Diskina ◽  
K. V. Prokof'ev ◽  
G. N. Labintseva

2016 ◽  
Vol 111 (4) ◽  
pp. 875-882 ◽  
Author(s):  
Alba Cuecas ◽  
Jorge Cruces ◽  
Juan F. Galisteo-López ◽  
Xiaojun Peng ◽  
Juan M. Gonzalez

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gengxin Hao ◽  
Yanyu Hu ◽  
Linfan Shi ◽  
Jun Chen ◽  
Aixiu Cui ◽  
...  

AbstractThe physicochemical properties of chitosan obtained from the shells of swimming crab (Portunus trituberculatus) and prepared via subcritical water pretreatment were examined. At the deacetylation temperature of 90 °C, the yield, ash content, and molecular weight of chitosan in the shells prepared via subcritical water pretreatment were 12.2%, 0.6%, and 1187.2 kDa, respectively. These values were lower than those of shells prepared via sodium hydroxide pretreatment. At the deacetylation temperature of 120 °C, a similar trend was observed in chitosan molecular weight, but differences in chitosan yield and ash content were not remarkable. At the same deacetylation temperature, the structures of chitosan prepared via sodium hydroxide and subcritical water pretreatments were not substantially different. However, the compactness and thermal stability of chitosan prepared via sodium hydroxide pretreatment was lower than those of chitosan prepared via subcritical water pretreatment. Compared with the chitosan prepared by sodium hydroxide pretreatment, the chitosan prepared by subcritical water pretreatment was easier to use in preparing oligosaccharides, including (GlcN)2, via enzymatic hydrolysis with chitosanase. Results suggested that subcritical water pretreatment can be potentially used for the pretreatment of crustacean shells. The residues obtained via this method can be utilized to prepare chitosan.


2020 ◽  
Vol 32 (7) ◽  
pp. 801-822 ◽  
Author(s):  
John J La Scala ◽  
Greg Yandek ◽  
Jason Lamb ◽  
Craig M Paquette ◽  
William S Eck ◽  
...  

4,4′-Methylenedianiline (MDA) is widely used in high-temperature polyimide resins, including polymerization of monomer reactants-15. The toxicity of MDA significantly limits the manufacturability using this resin. Modifying the substitution and electronics of MDA could allow for the reduction of toxicity while maintaining the high-performing properties of the materials derived from the modified MDA. The addition of a single methyl substituent, methoxy substituent, location of these substituents, and location of the amine relative to the phenolic bridge were modified as were other non-aniline diamines. Various anilines were condensed with paraformaldehyde under acidic conditions to yield dianilines. These dianilines and diamines were reacted with nadic anhydride and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride in methanol to form the polyamic acid oligomers and heated at elevated temperature to form polyimide oligomers. It was found that the molecular weight of the oligomers derived from MDA alternatives was generally lower than that of MDA oligomers resulting in lower glass transition temperatures ( T gs) and degradation temperatures. Additionally, methoxy substituents further reduce the T g of the polymers versus methyl substituents and reduce the thermal stability of the resin. Methyl-substituted alternatives produced polyimides with similar T gs and degradation temperatures. The toxicity of the MDA alternatives was examined. Although a few were identified with reduced toxicities, the alternatives with properties similar to that of MDA also had high toxicities.


Sign in / Sign up

Export Citation Format

Share Document