Studies on conformational changes of poly(trimethylene terephthalate) chains during uniaxially cold drawing using time-resolved polarized infrared analysis

Polymer ◽  
2015 ◽  
Vol 78 ◽  
pp. 59-68 ◽  
Author(s):  
Jian-Bang Jheng ◽  
Po-Da Hong
1989 ◽  
Vol 54 (11) ◽  
pp. 3011-3024 ◽  
Author(s):  
Vlastimil Fidler ◽  
Stefan Vajda ◽  
Zuzana Limpouchová ◽  
Jiří Dvořák ◽  
Karel Procházka ◽  
...  

The methodology of polarization time-resolved fluorometry and interpretation of its results are outlined at a general level, and the measurement on and use of facilities of the Edinburgh Instruments Model 299T apparatus are discussed in detail. The dynamics of conformational changes in chains of poly(methacrylic acid) containing covalently bonded dansyl labels are studied in aqueous solutions at various pH. It is shown that at pH > 6, the shorter effective rational correlation time τr < 2 ns corresponds to the rotation of the free dansyl label about bonds by which it is attached to the polymeric chain; at pH < 4 the longer effective rational correlation time τr = 20-26 ns corresponds to the rotation of the compact spherical formation constituted by a part of the collapsed polymeric chain in which the label is fixed and whose relative molecular mass is approx. 15 000-20 000.


RSC Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 1086-1097
Author(s):  
Shunki Takaramoto ◽  
Yusuke Nakasone ◽  
Kei Sadakane ◽  
Shinsaku Maruta ◽  
Masahide Terazima

Dynamics of conformation changes of α-synuclein induced by the presence of SDS micelles are revealed using time-resolved diffusion, CD, and FRET measurements combined with a micro-stopped flow system.


1999 ◽  
Vol 274 (9) ◽  
pp. 5508-5513 ◽  
Author(s):  
Frithjof von Germar ◽  
Asier Galán ◽  
Oscar Llorca ◽  
Jose L. Carrascosa ◽  
Jose M. Valpuesta ◽  
...  

FEBS Letters ◽  
1994 ◽  
Vol 337 (2) ◽  
pp. 171-174 ◽  
Author(s):  
Hideo Arakawa ◽  
Takuji Urisaka ◽  
Hirotsugu Tsuruta ◽  
Yoshiyuki Amemiya ◽  
Hiroshi Kihara ◽  
...  

2018 ◽  
Vol 74 (8) ◽  
pp. 727-738
Author(s):  
Chenzheng Wang ◽  
Yuexia Lin ◽  
Devin Bougie ◽  
Richard E. Gillilan

Biological small-angle X-ray solution scattering (BioSAXS) is now widely used to gain information on biomolecules in the solution state. Often, however, it is not obvious in advance whether a particular sample will scatter strongly enough to give useful data to draw conclusions under practically achievable solution conditions. Conformational changes that appear to be large may not always produce scattering curves that are distinguishable from each other at realistic concentrations and exposure times. Emerging technologies such as time-resolved SAXS (TR-SAXS) pose additional challenges owing to small beams and short sample path lengths. Beamline optics vary in brilliance and degree of background scatter, and major upgrades and improvements to sources promise to expand the reach of these methods. Computations are developed to estimate BioSAXS sample intensity at a more detailed level than previous approaches, taking into account flux, energy, sample thickness, window material, instrumental background, detector efficiency, solution conditions and other parameters. The results are validated with calibrated experiments using standard proteins on four different beamlines with various fluxes, energies and configurations. The ability of BioSAXS to statistically distinguish a variety of conformational movements under continuous-flow time-resolved conditions is then computed on a set of matched structure pairs drawn from the Database of Macromolecular Motions (http://molmovdb.org). The feasibility of experiments is ranked according to sample consumption, a quantity that varies by over two orders of magnitude for the set of structures. In addition to photon flux, the calculations suggest that window scattering and choice of wavelength are also important factors given the short sample path lengths common in such setups.


2018 ◽  
Vol 57 (31) ◽  
pp. 9955-9960 ◽  
Author(s):  
Jörn Güldenhaupt ◽  
Marta Amaral ◽  
Carsten Kötting ◽  
Jonas Schartner ◽  
Djordje Musil ◽  
...  

1997 ◽  
Vol 3 (S2) ◽  
pp. 803-804
Author(s):  
B.M. Salzberg ◽  
A.L. Obaid

Molecular indicators of membrane potential may be used to obtain sub-millisecond time resolved images of transient changes in membrane voltage in a variety of biological systems. These probes are small amphipathic molecules having molecular weights of 400-500, and dimensions on the order of 10 Angstroms, which bind to, but do not cross cell membranes, and change either their absorbance or fluorescence in response to membrane voltage. These extrinsic optical signals depend linearly upon membrane potential, and the best of the dyes respond to a step change in voltage in less than 1.5 μsec at room temperature. The salient properties of fast potentiometric probes will be discussed, and the fidelity of optical recordings to transmembrane voltage changes will be considered.Since voltage changes in excitable cells take place on a time scale that is determined by the kinetics of conformational changes in membrane proteins, and by membrane electrical time constants, these changes tend to be very rapid, and resolving them requires imaging systems that are frequently orders of magnitude faster than usual video rates.


Sign in / Sign up

Export Citation Format

Share Document