A unique Microfiltration membrane derived from the poly(ethylene-co-methyl acrylate)/Poly(vinylidene fluoride) (EMA/PVDF) biphasic blends and surface modification for antifouling application

2019 ◽  
Vol 79 ◽  
pp. 106031 ◽  
Author(s):  
Sanjay Remanan ◽  
Narayan Chandra Das
Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2520
Author(s):  
Arman B. Yeszhanov ◽  
Ilya V. Korolkov ◽  
Saule S. Dosmagambetova ◽  
Maxim V. Zdorovets ◽  
Olgun Güven

Membrane distillation (MD) is a rapidly developing field of research and finds applications in desalination of water, purification from nonvolatile substances, and concentration of various solutions. This review presents data from recent studies on the MD process, MD configuration, the type of membranes and membrane hydrophobization. Particular importance has been placed on the methods of hydrophobization and the use of track-etched membranes (TeMs) in the MD process. Hydrophobic TeMs based on poly(ethylene terephthalate) (PET), poly(vinylidene fluoride) (PVDF) and polycarbonate (PC) have been applied in the purification of water from salts and pesticides, as well as in the concentration of low-level liquid radioactive waste (LLLRW). Such membranes are characterized by a narrow pore size distribution, precise values of the number of pores per unit area and narrow thickness. These properties of membranes allow them to be used for more accurate water purification and as model membranes used to test theoretical models (for instance LEP prediction).


2020 ◽  
Vol 21 (24) ◽  
pp. 9679
Author(s):  
Adam Lech ◽  
Beata A. Butruk-Raszeja ◽  
Tomasz Ciach ◽  
Krystyna Lawniczak-Jablonska ◽  
Piotr Kuzmiuk ◽  
...  

Recently, extreme ultraviolet (EUV) radiation has been increasingly used to modify polymers. Properties such as the extremely short absorption lengths in polymers and the very strong interaction of EUV photons with materials may play a key role in achieving new biomaterials. The purpose of the study was to examine the impact of EUV radiation on cell adhesion to the surface of modified polymers that are widely used in medicine: poly(tetrafluoroethylene) (PTFE), poly (vinylidene fluoride) (PVDF), and poly-L-(lactic acid) (PLLA). After EUV surface modification, which has been performed using a home-made laboratory system, changes in surface wettability, morphology, chemical composition and cell adhesion polymers were analyzed. For each of the three polymers, the EUV radiation differently effects the process of endothelial cell adhesion, dependent of the parameters applied in the modification process. In the case of PVDF and PTFE, higher cell number and cellular coverage were obtained after EUV radiation with oxygen. In the case of PLLA, better results were obtained for EUV modification with nitrogen. For all three polymers tested, significant improvements in endothelial cell adhesion after EUV modification have been demonstrated.


Sign in / Sign up

Export Citation Format

Share Document