scholarly journals Stress-strain behavior and corresponding crystalline structures of four types of polyethylene under a wide range of strain rates

2021 ◽  
pp. 107460
Author(s):  
Tiange Zhu ◽  
Xiaolin Li ◽  
Xiuying Zhao ◽  
Xi Zhang ◽  
Yonglai Lu ◽  
...  
2014 ◽  
Vol 566 ◽  
pp. 80-85
Author(s):  
Kenji Nakai ◽  
Takashi Yokoyama

The present paper is concerned with constitutive modeling of the compressive stress-strain behavior of selected polymers at strain rates from 10-3 to 103/s using a modified Ramberg-Osgood equation. High strain-rate compressive stress-strain curves up to strains of nearly 0.08 for four different commercially available extruded polymers were determined on the standard split Hopkinson pressure bar (SHPB). The low and intermediate strain-rate compressive stress-strain relations were measured in an Instron testing machine. Six parameters in the modified Ramberg-Osgood equation were determined by fitting to the experimental stress-strain data using a least-squares fit. It was shown that the monotonic compressive stress-strain behavior over a wide range of strain rates can successfully be described by the modified Ramberg-Osgood constitutive model. The limitations of the model were discussed.


2021 ◽  
Author(s):  
SAGAR M. DOSHI, SAGAR M. DOSHI, ◽  
NITHINKUMAR MANOHARAN ◽  
BAZLE Z. (GAMA) HAQUE, ◽  
JOSEPH DEITZEL ◽  
JOHN W. GILLESPIE, JR.

Epoxy resin-based composite panels used for armors may be subjected to a wide range of operating temperatures (-55°C to 76°C) and high strain rates on the order of 103-104 s-1. Over the life cycle, various environmental factors also affect the resin properties and hence influence the performance of the composites. Therefore, it is critical to determine the stress-strain behavior of the epoxy resin over a wide range of strain rates and temperatures for accurate multi-scale modeling of composites and to investigate the influence of environmental aging on the resin properties. Additionally, the characterization of key mechanical properties such as yield stress, modulus, and energy absorption (i.e. area under the stress-strain curve) at varying temperatures and moisture can provide critical data to calculate the material operating limits. In this study, we characterize mechanical properties of neat epoxy resin, SC-15 (currently used in structural armor) and RDL-RDC using uniaxial compression testing. RDL-RDC, developed by Huntsman Corporation, has a glass transition temperature of ~ 120°C, compared to ~ 85°C of SC-15. A split Hopkinson pressure bar is used for high strain rate testing. Quasistatic testing is conducted using a screw-driven testing machine (Instron 4484) at 10-3 s-1 and 10-1 s-1 strain rates and varying temperatures. The yield stress is fit to a modified Eyring model over the varying strain rates at room temperature. For rapid investigation of resistance to environmental aging, accelerated aging tests are conducted by immersing the specimens in 100°C water for 48 hours. Specimens are conditioned in an environmental chamber at 76 °C and 88% RH until they reach equilibrium. Tests are then conducted at five different temperatures from 0°C to 95°C, and key mechanical properties are then plotted vs. temperature. The results presented are an important step towards developing a methodology to identify environmental operating conditions for composite ground vehicle applications.


2007 ◽  
Vol 558-559 ◽  
pp. 441-448 ◽  
Author(s):  
Jong K. Lee

During hot working, deformation of metals such as copper or austenitic steels involves features of both diffusional flow and dislocation motion. As such, the true stress-true strain relationship depends on the strain rate. At low strain rates (or high temperatures), the stress-strain curve displays an oscillatory behavior with multiple peaks. As the strain rate increases (or as the temperature is reduced), the number of peaks on the stress-strain curve decreases, and at high strain rates, the stress rises to a single peak before settling at a steady-state value. It is understood that dynamic recovery is responsible for the stress-strain behavior with zero or a single peak, whereas dynamic recrystallization causes the oscillatory nature. In the past, most predictive models are based on either modified Johnson-Mehl-Avrami kinetic equations or probabilistic approaches. In this work, a delay differential equation is utilized for modeling such a stress-strain behavior. The approach takes into account for a delay time due to diffusion, which is expressed as the critical strain for nucleation for recrystallization. The solution shows that the oscillatory nature depends on the ratio of the critical strain for nucleation to the critical strain for completion for recrystallization. As the strain ratio increases, the stress-strain curve changes from a monotonic rise to a single peak, then to a multiple peak behavior. The model also predicts transient flow curves resulting from strain rate changes.


1976 ◽  
Vol 98 (2) ◽  
pp. 118-125 ◽  
Author(s):  
R. L. Klueh ◽  
T. L. Hebble

We have conducted a detailed series of tensile tests on one heat of annealed 2 1/4 Cr-1 Mo steel over the range 25 to 593°C (75 to 1100°F) and at nominal strain rates of 0.4, 0.04, 0.004, and 0.0004/min. To determine an empirical relationship to represent the flow behavior, we fitted the true-stress true-strain data from these tests to several proposed models. The models fit were those proposed by Hollomon, Ludwik, Ludwigson, and Voce. From a comparison of the standard error of estimate, the Voce equation was concluded to be the best mathematical description of the data under most test conditions and the best single representation over the wide range of test conditions.


1974 ◽  
Vol 47 (2) ◽  
pp. 318-332 ◽  
Author(s):  
N. Nakajima ◽  
E. A. Collins ◽  
H. H. Bowerman

Abstract A master curve scheme for small and large deformations was developed for tensile stress-strain behavior of butadiene—acrylonitrile uncrosslinked elastomers. Measurements were carried out at strain rates of 267 to 26,700 per cent/sec at temperatures of 25 to 97° C.


1974 ◽  
Vol 47 (2) ◽  
pp. 307-317 ◽  
Author(s):  
H. H. Bowerman ◽  
E. A. Collins ◽  
N. Nakajima

Abstract A high-speed, tensile-testing device was used to determine the stress—strain behavior of uncompounded butadiene—acrylonitrile copolymers over a range of temperatures and deformation rates. The strain rates were varied from 267 to 26,700 per cent/sec and the temperature was varied from 25 to 97° C. The high-speed tester was also used for stress—relaxation measurements by applying the strain nearly instantly in conformity with theoretical requirements in order to obtain the short time behavior. The WLF equation was obtained from the stress—relaxation data and then used to reduce the ultimate properties to one temperature over four decades of the strain rates. The ultimate properties could be represented by a failure envelope similar to those obtained for vulcanizates.


2007 ◽  
Vol 280-283 ◽  
pp. 967-972
Author(s):  
M. Matsuzawa ◽  
S. Horibe ◽  
J. Sakai

Non-elastic strain behavior was investigated for several different zirconia ceramics and a possible mechanism for anelasticity was discussed. Anelastic strain was detected in zirconia ceramics irrespective of the crystallographic phase and its productivity depended on the particular kind of dopant additive. It was found that the anelastic properties could be significantly influenced by the level of oxygen vacancy in the matrix, and that the anelastic strain might be produced by a slight shift of ionic species. In order to investigate the effect of anelasticity on mechanical properties on zirconia ceramics, the tensile strength was investigated for a wide range of strain rates. The obviously unique strain rate dependence was observed only in the materials having anelastic properties. It was assumed that anelasticity could be efficient at improving the tensile strength.


Sign in / Sign up

Export Citation Format

Share Document