Few layer deposition and sol-gel finishing of organic-inorganic compounds for improved flame retardant and hydrophilic properties of polyamide 66 textiles: A hybrid approach

2019 ◽  
Vol 129 ◽  
pp. 318-326 ◽  
Author(s):  
Chanchal Kumar Kundu ◽  
Xin Wang ◽  
Longxiang Liu ◽  
Lei Song ◽  
Yuan Hu
Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 432
Author(s):  
Eva Magovac ◽  
Bojana Vončina ◽  
Igor Jordanov ◽  
Jaime C. Grunlan ◽  
Sandra Bischof

A detailed review of recent developments of layer-by-layer (LbL) deposition as a promising approach to reduce flammability of the most widely used fibers (cotton, polyester, polyamide and their blends) is presented. LbL deposition is an emerging green technology, showing numerous advantages over current commercially available finishing processes due to the use of water as a solvent for a variety of active substances. For flame-retardant (FR) purposes, different ingredients are able to build oppositely charged layers at very low concentrations in water (e.g., small organic molecules and macromolecules from renewable sources, inorganic compounds, metallic or oxide colloids, etc.). Since the layers on a textile substrate are bonded with pH and ion-sensitive electrostatic forces, the greatest technological drawback of LbL deposition for FR finishing is its non-resistance to washing cycles. Several possibilities of laundering durability improvements by different pre-treatments, as well as post-treatments to form covalent bonds between the layers, are presented in this review.


2008 ◽  
Vol 47-50 ◽  
pp. 294-297 ◽  
Author(s):  
Xiu Wei Jia ◽  
Min Zhi Rong ◽  
Ming Qiu Zhang

A novel flame retardant polymethylsilsesquioxane (PMSQ) was successfully obtained via combination of non-hydrolytic and hydrolytic sol-gel routes. Chemical structure of the resultant PMSQ was determined by nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectrometry and powder X-ray diffraction, respectively. All the measurements demonstrated that the product possessed regular structure with chain-to-chain width of 0.87nm and chain thickness of 0.40nm. Weight average molecular weight of PMSQ was measured to be 3.5×105 using gel permeation chromatography. Numerical simulations of the molecular structure suggested that PMSQ should exhibit cis-isotactic configuration and double helical conformation at undisturbed condition.


2020 ◽  
Vol 20 (3) ◽  
pp. 1780-1789 ◽  
Author(s):  
Priyanka Katiyar ◽  
Shraddha Mishra ◽  
Anurag Srivastava ◽  
N. Eswara Prasad

TiO2, SiO2 and their hybrid nanocoatings are prepared on inherent flame retardant textile substrates from titanium(IV)iso-proproxide (TTIP) and tetraethoxysilane (TEOS) precursors using a sol–gel process followed by hydrothermal treatment. The coated samples are further functionalized by hexadecyltrimethoxysilane (HDTMS) to impart superhydrophobicity. Sample characterization of the nanosols, nanoparticles and coated samples are investigated using, X-ray diffractometer, transmission electron microscopy, scanning electron microscopy, UV-Vis spectroscopy, contact angle measurement. Stain degradation test under mild UV irradiation shows almost 54% degradation of coffee stain within 4 hours measured by Spectrophotometer. UV-Vis Absorption Spectroscopy demonstrates complete degradation of methyl orange colorant within 3 hours. Hybrid nanosol coated and HDTMS modified inherent flame retardant polyester surfaces show apparent water contact angle as ~145°, which is much closer to proximity of superhydrophobic surfaces. Thus, the novelty of present work is, by using sol–gel technique, a bi-functional textile surface has been developed which qualifies the very specific requirements of protective clothing like self-cleaning property (imparted by TiO2 nanoparticles) and superhydrophobicity (imparted by SiO2 nanoparticles and further surface modification by HDTMS), which are entirely contradictory in nature, in a single fabric itself. Thus developed textile surfaces also possess the other attributes of protective clothing like flame retardancy and air permeability.


Tekstilec ◽  
2017 ◽  
Vol 60 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Giuseppe Rosace ◽  
◽  
Claudio Colleoni ◽  
Emanuela Guido ◽  
Giulio Malucelli ◽  
...  

Author(s):  
Guylhaine Clavel ◽  
Catherine Marichy ◽  
Nicola Pinna

Sign in / Sign up

Export Citation Format

Share Document