Preparation and UV aging of nano-SiO2/fluorinated polyacrylate polyurethane hydrophobic composite coating

2020 ◽  
Vol 141 ◽  
pp. 105556 ◽  
Author(s):  
Fuying Yu ◽  
Ju Gao ◽  
Canpei Liu ◽  
Yaokun Chen ◽  
Gang Zhong ◽  
...  
2019 ◽  
Vol 26 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Fangfang Wang ◽  
Lajun Feng ◽  
Huini Ma ◽  
Zhe Zhai ◽  
Zheng Liu

Abstract To improve the wear resistance of polyurethane (PU) coating and its adhesion to the steel substrate, a series of simple and practicable techniques were designed to mix nano-SiO2 with PU powder to cast a coating layer onto the steel. When the addition of nano-SiO2 was small, a network structure of PU-SiO2 was produced. It improved the wear resistance of the composite coating and its adhesion to the steel substrate. When the addition of nano-SiO2 was excessive, agglomerated nano-SiO2 particles not only affected the bond between the PU resin and the steel substrate but also became abrasive materials, intensifying the abrasion of the composite coating during friction. It resulted in lower bonding strength and poorer wear resistance of the composite coating. The wear rate and friction coefficient of 2 wt.% SiO2/PU composite coating were 1.52×10−6 cm3/min N and 0.31, respectively. Its wear resistance was about 10 times as high as that of the pure PU coating. Furthermore, a simple and practicable installation was designed to test the bonding strength between the coating and the steel substrate. The bonding strength between 2 wt.% SiO2/PU composite coating and the steel substrate was 7.33 MPa, which was 39% higher than that of the pure PU coating.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 255
Author(s):  
Tao Xu ◽  
Qiangqiang Xiao ◽  
Jiayu Chen ◽  
Li Li ◽  
Xiongjun Yang ◽  
...  

This study proposes to utilize modified Nano-SiO2/fluorinated polyacrylate emulsion that was synthesized with a semi-continuous starved seed emulsion polymerization to improve the hydrophobicity, thermal stability, and UV-Vis absorption of polyacrylate emulsion film. To verify the proposed method, a series inspection had been conducted to investigate the features of the emulsion film. The morphological analysis indicated that Nano-SiO2 was surrounded by a silane molecule after modification, which can efficiently prevent silica nanoparticles from aggregating. Fourier transform infrared spectra confirmed that modified SiO2 and dodecafluoroheptyl methacrylate (DFMA) were successfully introduced to the copolymer latex. The particle size of latex increased with the introduction of modified Nano-SiO2 and DFMA. UV-Vis absorption spectra revealed that modified silicon nanoparticles can improve the ultraviolet shielding effect obviously. X-ray photoelectron spectroscopy illustrated that the film–air interface was richer in fluorine than film section and the glass side. The contact angle of modified Nano-SiO2/fluorinated polyacrylate emulsion containing 3 wt % DFMA was 112°, slightly lower than double that of polyacrylate emulsion, indicating composite emulsion films possess better hydrophobicity. These results suggest that introducing modified Nano-SiO2 and fluorine into polyacrylate emulsion can significantly enhance the thermal stability of emulsion films.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5067 ◽  
Author(s):  
Guoping Qian ◽  
Changdong Yang ◽  
Haidong Huang ◽  
Xiangbing Gong ◽  
Huanan Yu

Ultraviolet (UV) aging degrades the life span of asphalt pavement, nanomaterials used as modifiers exhibit good shielding function on UV light, but generally degrade the low-temperature property of asphalt, a compound modification was found to be a solution. In this study, nano-SiO2 and rubber powder were blended together with base asphalt to prepare compound modified asphalt. Compound modified asphalt with different blending dosages were subjected to UV light via a self-made UV aging simulation chamber. Basic performance tests and rheological tests were conducted including the UV aging influence. An optimum compound ratio was finally recommended based on the goal to remove the adverse effect of nano-SiO2 on the thermal cracking. Results show that the anti-UV aging property of asphalt is improved obviously due to the blocking function of nano-SiO2 and carbon black in rubber powder, and the enhancing effect of nano-SiO2 is found to be the most significant.


2011 ◽  
Vol 32 (8-9) ◽  
pp. 4180-4186 ◽  
Author(s):  
Bin Wei ◽  
Shenhua Song ◽  
Hailin Cao

2018 ◽  
Vol 25 (4) ◽  
pp. 1275-1284 ◽  
Author(s):  
Youping Tu ◽  
Fuwen Zhou ◽  
Yi Cheng ◽  
Han Jiang ◽  
Cong Wang ◽  
...  

Author(s):  
Yang Xi-Chen ◽  
Li Hui-Shan ◽  
Wang Yun-Shan ◽  
Ma Bing ◽  
Yi Ying-Hui

Sign in / Sign up

Export Citation Format

Share Document