Resistance response enhancement and reduction of Botrytis cinerea infection in strawberry fruit by Morchella conica mycelial extract

2021 ◽  
Vol 175 ◽  
pp. 111470
Author(s):  
Gulamnabi L. Vanti ◽  
Yehoram Leshem ◽  
Segula Masaphy
Planta ◽  
2021 ◽  
Vol 255 (1) ◽  
Author(s):  
Yunting Zhang ◽  
Yu Long ◽  
Yiting Liu ◽  
Min Yang ◽  
Liangxin Wang ◽  
...  

1998 ◽  
Vol 61 (10) ◽  
pp. 1352-1357 ◽  
Author(s):  
G. NTIRAMPEMBA ◽  
B. E. LANGLOIS ◽  
D. D. ARCHBOLD ◽  
T. R. HAMILTON-KEMP ◽  
M. M. BARTH

Aerobic, microaerophilic, coliform, and mold populations of Botrytis cinerea -inoculated strawberry fruit not exposed (control) or exposed to low and high quantities of four volatile compounds during storage at 2°C were determined after storage for 7 days and after removal of the volatile and transfer to 22°C for 3 days. Fruit harvested at the ripe stage were inoculated with 106 conidia B. cinerea per ml and were placed in plastic containers containing no volatile compound (control) or two quantities of (E)-2-hexenal (10 or 100 μl), (E)-2-hexenal diethyl acetal (30 or 300 μl), benzaldehyde (30 or 300 μl), or methyl benzoate (12 or 60 μl). The fruit containers were overwrapped with a low-density polyethylene film, sealed, stored at 2°C for 7 days, and then transferred to 22°C for 3 days. Aerobic, microaerophilic, and coliform populations of fruit exposed to volatile compounds tended to be lower than the Controls after storage at 2°C for 7 days and, depending on the volatile compound, similar, lower, or higher than the Controls after transfer and storage at 22°C. However, due to variability in initial aerobic, microaerophilic, and coliform populations of the fruit used in the different trials (P < 0.05), none of the differences between control and treatment and between treatments within a sample time were significant (P > 0.05). Strawberry fruit exposed to 100 μl of (E)-2-hexenal was the only treatment that did not show a significant increase in mold populations after transfer and storage at 22°C for 3 days. Additional studies are needed to determine if (E)-2-hexenal can be used in combination with other postharvest storage conditions, such as low temperature and controlled/modified atmosphere, to delay mold spoilage and extend the shelf life of the strawberry.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1246
Author(s):  
Doaa Y. Abd-Elkader ◽  
Mohamed Z. M. Salem ◽  
Doaa A. Komeil ◽  
Asma A. Al-Huqail ◽  
Hayssam M. Ali ◽  
...  

This work investigates an experimental study for using low-cost and eco-friendly oils to increase the shelf life of strawberry fruit. Three natural oils were used: (i) Eucalyptus camaldulensis var obtuse, (ii) Mentha piperita green aerial parts essential oils (EOs), and (iii) Moringa oleifera seeds n-hexane fixed oil (FO). Furthermore, a mixture of EOs from E. camaldulensis var obtusa and M. piperita (1/1 v/v) was used. The treated fruits were stored at 5 °C and 90% relative humidity (RH) for 18 days. HPLC was used to analyse the changes in phenolic compounds during the storage periods. The effects of biofumigation through a slow-release diffuser of EOs (E. camaldulensis var obtusa and M. piperita), or by coating with M. oleifera FO, were evaluated in terms of control of post-harvest visual and chemical quality of strawberry fruits. The post-harvest resistance of strawberry fruits to Botrytis cinerea fungal infection was also evaluated. As a result, the EO treatments significantly reduced the change in visual and chemical quality of strawberry fruit. Additionally, changes in the titratable acidity of moringa FO-coated strawberry fruits were delayed. EO treatments improved total soluble solids, total phenols, ascorbic acid, antioxidants and peroxidase. E. camaldulensis var obtusa and M. piperita (1/1 v/v) EO-vapour fruit exhibited a slower rate of deterioration, compared to other treatments in all tested, in two experiments. The lowest colour change (ΔE) was observed inthe fruit treated with E. camaldulensis var obtusa EO and M. oleifera FO. HPLC showed changes in phenolic compounds’ concentration, where p-coumaric acid, caffeic acid, gallic acid, ferulic acid and ellagic acid were mostly identified in the fruits treated with the oils. SEM examination confirmed the potential decrease in fungal growth as the fruits were treated with EOs. In conclusion, the treatment of EOs during different storage periods showed promising characterisations for strawberry fruit quality.


2019 ◽  
Vol 309 ◽  
pp. 108311 ◽  
Author(s):  
Angela R. Romero Bernal ◽  
Eunice V. Contigiani ◽  
Héctor H.L. González ◽  
Stella M. Alzamora ◽  
Paula L. Gómez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document