scholarly journals Scanning acoustic microscopy as a non-destructive imaging tool to localize defects inside battery cells

2020 ◽  
Vol 6 ◽  
pp. 100035 ◽  
Author(s):  
L. Pitta Bauermann ◽  
L.V. Mesquita ◽  
C. Bischoff ◽  
M. Drews ◽  
O. Fitz ◽  
...  
2019 ◽  
Vol 91 (10) ◽  
pp. 7-15
Author(s):  
Tomasz Piwowarczyk ◽  
Marcin Korzeniowski ◽  
Dawid Majewski

This article explores the possibilities of using non-destructive ultrasonic techniques to analyze the quality of lapped braze-welded joints. The tests were performed for 4 material groups (DC03+ZE steel and X5CrNi18-19 steel, aluminum alloys AW-5754 and AW-6061, titanium Grade 2 and copper Cu-ETP). As part of the work, additional materials and joint processes and its parameters were selected (TIG, MIG, laser). The quality of joints was monitored using scanning acoustic microscopy. Based on the A-scan andC-scan images, potential joints imperfections were determined. The possibilities of using advanced ultrasonic techniques to analyze the quality of braze joints was assessed.


2014 ◽  
Vol 536-537 ◽  
pp. 272-275
Author(s):  
Xiang Hui Guo ◽  
Chun Guang Xu ◽  
Liu Yang ◽  
Kai Peng

Scanning Acoustic Microscopy (SAM) has been a powerful non-destructive testing tool used in electronic packaging and material characterization. With the development of 3D electronic packaging, internal dimensions of electronic packaging are getting more and more smaller, and the detection accuracy of existing non-destructive testing technology is far behind the requirements of manufacturing technology. In this study, a set of practical SAM system was developed independently by our Lab. And its detection resolution was analyzed using high frequency focused transducers with center frequency ranging from 20 MHz to 100MHz. The experimental results show that the lateral resolution of the ultrasonic transducer with 100MHz central frequency can reach about 40 microns, which is consistent with calculated resolution. Comparing with Sparrow criteria, Rayleigh criteria is more coherent with the experimental results.


1989 ◽  
pp. 747-752 ◽  
Author(s):  
U. Stelwagen ◽  
P.P.J. Ramaekers ◽  
P.P. van't Veen ◽  
L.F. van der Wal

Author(s):  
Daniel J. D. Sullivan ◽  
Andrew J. Komrowski ◽  
Luis A. Curiel ◽  
Kevan V. Tan

Abstract Scanning acoustic microscopy (SAM) is a non-destructive tool for analysis of packaged devices. New materials, package configurations, and technologies have required adaptation of standard practices in SAM. The detection of cracked die, voids, or delamination in the underfill or package are standard issues for SAM. SAM can routinely detect large cracks through the central 80% of the die; however, the occurrence of smaller cracks at the edge of the flip chip die is problematic. This article proposes a model in which alteration in the standard SAM parameters, the gain and Time-of-Flight, enable detection of die edge cracks in assembled Flip Chip devices. IR imaging after thinning and polishing of the die confirms the die edge cracks. The SAM analysis can replace the IR imaging for detection of small die edge cracks taking minutes to complete instead of the hours involved in the sample preparation for IR imaging.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4868 ◽  
Author(s):  
Francesco Bertocci ◽  
Andrea Grandoni ◽  
Tatjana Djuric-Rissner

The main aim of this paper is to provide the feasibility of non-destructive testing (NDT) method, such as scanning acoustic microscopy (SAM), for damage detection in ultrasound (US) probes for medical imaging during the manufacturing process. In a highly competitive and demanding electronics and biomedical market, reliable non-destructive methods for quality control and failure analysis of electronic components within multi-layered structures are strongly required. Any robust non-destructive method should be capable of dealing with the complexity of miniaturized assemblies, such as the acoustic stack of ultrasonic transducers. In this work, the application of SAM in an industrial scenario was studied for 24 samples of a phased array probe, in order to investigate potential internal integrity, to detect damages, and to assess the compliance of high-demanding quality requirements. Delamination, non-homogeneous layers with micron-thickness, and entrapped air bubbles (blisters) in the bulk of US probe acoustic stacks were detected and studied. Analysis of 2D images and defects visualization by means of ultrasound-based NDT method were compared with electroacoustic characterization (also following as pulse-echo test) of the US probe through an ad-hoc measurement system. SAM becomes very useful for defect detection in multilayered structures with a thickness of some microns by assuring low time-consuming (a limit for other NDT techniques) and quantitative analyses based on measurements. The study provides a tangible contribution and identifies an advantage for manufacturers of ultrasound probes that are oriented toward continuous improvement devoted to the process capability, product quality, and in-process inspection.


Sign in / Sign up

Export Citation Format

Share Document