Measuring shear properties and normal stresses generated within a rotational shear cell for consolidated and non-consolidated powders

2009 ◽  
Vol 190 (1-2) ◽  
pp. 65-69 ◽  
Author(s):  
R.E. Freeman ◽  
J.R. Cooke ◽  
L.C.R. Schneider
2015 ◽  
Vol 283 ◽  
pp. 103-112 ◽  
Author(s):  
Sara Koynov ◽  
Benjamin Glasser ◽  
Fernando Muzzio

2011 ◽  
Vol 51 (1) ◽  
pp. 487 ◽  
Author(s):  
Mohammad Sadegh Asadi ◽  
Vamegh Rasouli

Fault reactivation is an unfavourable incident during drilling and production that may occur due to changes in situ stresses and reservoir pressure. Only a few studies, in their analyses, have included the effects of fault geometrical properties—these are important parameters controlling fault slippage and damage around it. In this paper, the significant influence of fracture morphology on the mechanical behaviour of rock fractures was investigated through experimental studies of shearing rock fractures in the lab. The experiments carried out using a fracture shear cell (FSC): the cell that was modified by adding a number of components to an existing true triaxial stress cell (TTSC) and designing a duplex high pressure cylinder that is capable of applying large normal stresses to the sample at a constant rate. A number of artificial blocks made of mortar material were subjected to shear tests using FSC under a wide range of normal stresses and at different shearing directions. The outputs of uniaxial compressive strength and fracture shear tests in the lab were used to plot the failure envelope of the fractured rock mass and discuss the failure mechanism through shearing. Accordingly, a calibrated, numerical discrete element method (DEM) was used to simulate the shear behaviour of fractures previously tested in the lab. The results of lab tests and DEM simulations will be presented and different failure mechanisms that are expected during shearing will be explained. The results show the significant influence of surface roughness on shear strength and extent of damage zone along the fracture. It was found that the shearing response of fractures depends on the magnitude of normal stress, which indicates the importance of having a good knowledge of in-situ stresses when modelling fault reactivation and damage near the fault zones. The results of lab experiments and numerical simulations were compared and good agreements were observed.


1984 ◽  
Vol 142 ◽  
pp. 391-430 ◽  
Author(s):  
S. B. Savage ◽  
M. Sayed

Experimental results obtained during rapid shearing of several dry, coarse, granular materials in an annular shear cell are described. The main purpose of the tests was to obtain information that could be used to guide the theoretical development of constitutive equations suitable for the rapid flow of cohesionless bulk solids at low stress levels. The shear-cell apparatus consists of two concentric disk assemblies mounted on a fixed shaft. Granular material was contained in an annular trough in the bottom disk and capped by a lipped annular ring on the top disk. The bottom disk can be rotated at specified rates, while the top disk is loaded vertically and is restrained from rotating by a torque arm connected to a force transducer. The apparatus was thus designed to determine the shear and normal stresses as functions of solids volume fraction and shear rate.Tests were performed with spherical glass and polystyrene beads of nearly uniform diameters, spherical polystyrene beads having a bimodal size distribution and with angular particles of crushed walnut shells. The particles ranged from about ½ to 2 mm in size. At the lower concentrations and high shear rates the stresses are generated primarily by collisional transfer of momentum and energy. Under these conditions, both normal and shear stresses were found to be proportional to the particle density, and the squares of the shear rate and particle diameter. At higher concentrations and lower shear rates, dry friction between particles becomes increasingly important, and the stresses are proportional to the shear rate raised to a power less than two. All tests showed strong increases in stresses with increases in solids concentrations. The ratio of shear to normal stresses showed only a weak dependence upon shear rate, but it increased with decreasing concentration. At the very highest concentrations with narrow shear gaps, finite-particle-size effects became dominant and differences in stresses of as much as an order of magnitude were observed for the same shear rate and solids concentration.


Sign in / Sign up

Export Citation Format

Share Document