Modeling of dry snow adhesion during normal impact with surfaces

2020 ◽  
Vol 361 ◽  
pp. 1081-1092 ◽  
Author(s):  
Tobias Eidevåg ◽  
Per Abrahamsson ◽  
Matthias Eng ◽  
Anders Rasmuson
Keyword(s):  
1976 ◽  
Vol 31 ◽  
pp. 233-237 ◽  
Author(s):  
Otto E. Berg ◽  
Henry Wolf ◽  
John Rhee

In December, 1973, a Lunar Ejecta and Meteorites (LEAM) experiment was placed in the Taurus-Littrow area of the moon by the Apollo 17 Astronauts. Objectives of the experiment were centered around measurements of impact parameters of cosmic dust on the lunar surface. During preliminary attempts to analyze the data it became evident that the events registered by the sensors could not be attributed to cosmic dust but could only be identified with the lunar surface and the local sun angle. The nature of these data coupled with post-flight studies of instrument characteristics, have led to a conclusion that the LEAM experiment is responding primarily to a flux of highly charged, slowly moving lunar surface fines. Undoubtedly concealed in these data is the normal impact activity from cosmic dust and probably lunar ejecta, as well. This paper is based on the recognition that the bulk of events registered by the LEAM experiment are not signatures of hypervelocity cosmic dust particles, as expected, but are induced signatures of electrostatically charged and transported lunar fines.


2012 ◽  
Vol 711 ◽  
pp. 259-280 ◽  
Author(s):  
M. R. Moore ◽  
S. D. Howison ◽  
J. R. Ockendon ◽  
J. M. Oliver

AbstractThis paper extends Wagner theory for the ideal, incompressible normal impact of rigid bodies that are nearly parallel to the surface of a liquid half-space. The impactors considered are three-dimensional and have an oblique impact velocity. A formulation in terms of the displacement potential is used to reveal the relationship between the oblique and corresponding normal impact solutions. In the case of axisymmetric impactors, several geometries are considered in which singularities develop in the boundary of the effective wetted region. We present the corresponding pressure profiles and models for the splash sheets.


ROTASI ◽  
2014 ◽  
Vol 16 (1) ◽  
pp. 34
Author(s):  
Rusnaldy Rusnaldy ◽  
Ismoyo Haryanto ◽  
Norman Iskandar ◽  
Binar Ade Anugra ◽  
Ahmad Zaedun

Results of study on the performance of 0.4 mm mild steel plate when impacted by 4.5 mm diameter steel ogive-shaped projectile at 45o, 60o (oblique impact) and 90 o (normal impact) angles of attack are presented. The projectiles were fired at highest velocity using air riffle gun. The target-holding fixture was located at a distance of 2 m from the gun. Experimental results show that steel plate provides protection at 45o and 60o obliquity, but fails to provide protection at angle of attack of 90o (normal impact)


2014 ◽  
Vol 16 (3) ◽  
pp. 339-347 ◽  
Author(s):  
Rimantas Kačianauskas ◽  
Liudas Tumonis ◽  
Algis Džiugys

1974 ◽  
Vol 96 (4) ◽  
pp. 595-604 ◽  
Author(s):  
P. A. Engel ◽  
R. G. Bayer

The wear process between two elastic bodies, repeatedly impacting in an axially symmetric configuration is investigated analytically and experimentally. The mechanism initiating wear is that of surface fatigue, and the paper aims to explain the geometric process of wear formation beyond the “zero wear limit.” In doing so, an engineering, predictive model is sought, whereby the depth of a worn crater is related to the stresses arising during impact and to the number of loading cycles on the specimen. Four major accomplishments are embodied in the paper: (1) the quasi-static analysis of impact on a medium of nonuniform (cratered) surface geometry, (2) a heuristic derivation of the optimum wearpath, (3) derivation of the partial differential equation of normal impact wear, and (4) computation of the impact wear process for two discrete impact wear configurations and comparison of experimental work with the analytical results. The resulting conclusion is that impact wear proceeds at continuously varying curvature until the soft body conforms to the shape of the hard indenter. By equating the hysteretic wear energy with a fraction of the peak strain energy, quantitative wear history predictions are made for discrete geometries, such as a hard sphere impacting against a soft plane. Some experimental results are given between steel and aluminum specimens, confirming the analytical predictions.


Author(s):  
Yoshimi Ohta ◽  
Akemi Nishida ◽  
Haruji Tsubota ◽  
Yinsheng Li

Many empirical formulae have been proposed to evaluate the local damage to reinforced concrete structures caused by the impact of rigid projectiles. Most of these formulae have been derived based on impact tests perpendicular to the target structures. To date, few impact tests oblique to the target structures have been conducted. The purpose of this study is to propose a new formula for evaluating the local damage caused by oblique impacts based on experiments and simulations. The new formula is derived by modifying an empirical formulation for normal impact and the agreement with results of past oblique impact tests is discussed.


Author(s):  
Y. Xu ◽  
K. L. Yung ◽  
S. M. Ko

Static frictions are neglected in many dynamic analyses mainly due to inappropriate modeling of them. A new dynamic model describing the nonlinear and discrete features of static frictions is proposed in this paper. Using the new model, the drilling process of the hammer-drill system utilized in the EAS’ Mars mission is analyzed. It is shown that most important functions of the hammer-drill system are realized by static frictions, which were not observed before the introduction of the new model of static frictions. Static frictions provide the torsional force on the drill and make the normal impact happen before the rotation, which is critical to the efficiency of the cutting process of the hammer-drill system.


Sign in / Sign up

Export Citation Format

Share Document