KETAHANAN BALISTIK LEMBARAN BAJA PADA BERBAGAI SUDUT TEMBAK

ROTASI ◽  
2014 ◽  
Vol 16 (1) ◽  
pp. 34
Author(s):  
Rusnaldy Rusnaldy ◽  
Ismoyo Haryanto ◽  
Norman Iskandar ◽  
Binar Ade Anugra ◽  
Ahmad Zaedun

Results of study on the performance of 0.4 mm mild steel plate when impacted by 4.5 mm diameter steel ogive-shaped projectile at 45o, 60o (oblique impact) and 90 o (normal impact) angles of attack are presented. The projectiles were fired at highest velocity using air riffle gun. The target-holding fixture was located at a distance of 2 m from the gun. Experimental results show that steel plate provides protection at 45o and 60o obliquity, but fails to provide protection at angle of attack of 90o (normal impact)

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Abouel-Kasem ◽  
M. A. Al-Bukhaiti ◽  
K. M. Emara ◽  
S. M. Ahmed

In the present work, the topographical images of slurry erosion surfaces at different impact angles were quantified using fractal analysis. The study showed that the variation of fractal value of slope of linearized power spectral density with the impact angle is largely similar to the relationship between the erosion rate and the impact angle. Both the fractal value and erosion rate were maximum at 45 deg and 90 deg for ductile and brittle materials, respectively. It was found also that the variation of fractal values versus the impact angle has a general trend that does not depend on magnification factor. The fractal features to the eroded surfaces along different directions showed high directionality at oblique impact angle and were symmetrical at normal impact.


2021 ◽  
Vol 11 (7) ◽  
pp. 3275
Author(s):  
Majid Yaseri Gilvaee ◽  
Massood Mofid

This paper investigates the influence of an opening in the infill steel plate on the behavior of steel trapezoidal corrugated infill panels. Two specimens of steel trapezoidal corrugated shear walls were constructed and tested under cyclic loading. One specimen had a single rectangular opening, while the other one had two rectangular openings. In addition, the percentage of opening in both specimens was 18%. The initial stiffness, ultimate strength, ductility ratio and energy dissipation capacity of the two tested specimens are compared to a specimen without opening. The experimental results indicate that the existence of an opening has the greatest effect on the initial stiffness of the corrugated steel infill panels. In addition, the experimental results reveal that the structural performance of the specimen with two openings is improved in some areas compared to the specimen with one opening. To that end, the energy dissipation capacity of the specimen with two openings is obtained larger than the specimen with one opening. Furthermore, a number of numerical analyses were performed. The numerical results show that with increasing the thickness of the infill plate or using stiffeners around the opening, the ultimate strength of a corrugated steel infill panel with an opening can be equal to or even more than the ultimate strength of that panel without an opening.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Long Liu ◽  
Lifeng Wang ◽  
Ziwang Xiao

PurposeReinforcement of reinforced concrete (RC) beams in-service have always been an important research field, anchoring steel plate in the bottom of the beams is a kind of common reinforcement methods. In actual engineering, the contribution of pavement layer to the bearing capacity of RC beams is often ignored, which underestimates the bearing capacity and stiffness of RC beams to a certain extent. The purpose of this paper is to study the effect of pavement layer on the RC beams before and after reinforcement.Design/methodology/approachFirst, static load experiments are carried out on three in-service RC hollow slab beams, meanwhile, nonlinear finite element models are built to study the bearing capacity of them. The nonlinear material and shear slip effect of studs are considered in the models. Second, the finite element models are verified, and the numerical simulation results are in good agreement with the experimental results. Last, the finite element models are adopted to carry out the research on the influence of different steel plate thicknesses on the flexural bearing capacity and ductility.FindingsThe experimental results showed that pavement layers increase the flexural capacity of hollow slab beams by 16.7%, and contribute to increasing stiffness. Ductility ratio of SPRCB3 and PRCB2 was 30% and 24% lower than that of RCB1, respectively. The results showed that when the steel plate thickness was 1 mm–6 mm, the bearing capacity of the hollow slab beam increased gradually from 2158.0 kN.m to 2656.6 kN.m. As the steel plate thickness continuously increased to 8 mm, the ultimate bearing capacity increased to 2681.0 kN.m. The increased thickness did not cause difference to the bearing capacity, because of concrete crushing at the upper edge.Originality/valueIn this paper, based on the experimental study, the bearing capacity of hollow beam strengthened by steel plate with different thickness is extrapolated by finite element simulation, and its influence on ductility is discussed. This method not only guarantees the accuracy of the bearing capacity evaluation, but also does not require a large number of samples, and has certain economy. The research results provide a basis for the reinforcement design of similar bridges.


Author(s):  
Abdul Ghofur ◽  
Dhonie Adetya Rachman ◽  
Muhammad Mochtar Lutfi ◽  
Fathur Rahman

<p class="02abstracttext">Leachate water from final waste landfill (Tempat Pembuangan Akhir, TPA) contains harmful substances for the environment and living organisms. Furthermore, the leachate water can deteriorate equipment buried near TPA, e.g. buried water pipe. This work investigated the corrosion rate of mild steel SPCC SD after immersion in leachate water of TPA Gunung Kupang and Cahaya Kencana located in South Kalimantan. The steel plate immersion into leachate water was worked out in 3 different cases. The first case was 2 weeks immersion in leachate water followed by 1 week contact with ambient air. In the second case, steel plate was immersed in leachate water for 1 week and then 2 weeks in direct contact with ambient air. The last one was steel plate immersion in leachate water for 3 weeks without any direct contact with ambient air. The investigation shows that longer contact duration between wet steel surface, after immersion in leachate water, with ambient air increases the corrosion rate. The investigation shows also that the corrosion rate due to leachate water from Gunung Kupang landfill is higher than that of Cahaya Kencana landfill. Corrosion rate for TPA Gunung Kupang case varies from 0.441 to 0.718 mmpy. Meanwhile, corrosion rate for TPA Cahaya Kencana varies from 0.131 to 0.495 mmpy. This is due to lower pH of leachate water from TPA Mount Kupang.</p>


2015 ◽  
Vol 801 ◽  
pp. 25-32
Author(s):  
Ozdes Cermik ◽  
Hamid Ghaednia ◽  
Dan B. Marghitu

In the current study a flattening contact model, combined with a permanent deformation expression, has been analyzed for the oblique impact case. The model has been simulated for different initial conditions using MATLAB. The initial impact velocity used for the simulations ranges from 0.5 to 3 m/s. The results are compared theoretically for four different impact angles including 20, 45, 70, and 90 degrees. The contact force, the linear and the angular motion, the permanent deformation, and the coefficient of restitution have been analyzed. It is assumed that sliding occurs throughout the impact.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Raja R. Katta ◽  
Andreas A. Polycarpou ◽  
Jorge V. Hanchi ◽  
Robert M. Crone

With the increased use of hard disk drives (HDDs) in mobile and consumer applications combined with the requirement of higher areal density, there is enhanced focus on reducing head disk spacing, and consequently there is higher susceptibility of slider/disk impact damage during HDD operation. To investigate this impact process, a dynamic elastic-plastic finite element model of a sphere (representing a slider corner) obliquely impacting a thin-film disk was created to study the effect of the slider corner radius and the impact velocity on critical contact parameters. To characterize the energy losses due to the operational shock impact damage, the coefficient of restitution for oblique elastic-plastic impact was studied using the finite element model. A modification to an existing physics-based elastic-plastic oblique impact coefficient of restitution model was proposed to accurately predict the energy losses for a rigid sphere impacting a half-space. The analytical model results compared favorably to the finite element results for the range from low impact angles (primarily normal impacts) to high impact angles (primarily tangential impacts).


2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940005
Author(s):  
Jie Cui ◽  
Xin Chen ◽  
Ali Tian ◽  
Renchuan Ye ◽  
Yanxi Qiao ◽  
...  

To analyze the influence of penetration resistance for different steel plate configurations, different steel plates impacted by various projectiles were studied using the LS-DYNA code. The calculation results obtained using the LS-DYNA code and prior experimental results reported in the literature agree well with the damaged image of projectiles penetrating steel plates and the initial residual velocity curve of the projectile. The Q235 steel constitutive model is modified based on the Johnson–Cook model. It can be concluded that the LS-DYNA code analysis is reliable when compared with the experimental results. We then used the LS-DYNA code to conduct an extensive study into the penetration resistance of monolithic, contact-type double-layered and gap-type double-layered targets with the same surface density, impacted by different projectiles. The failure mode of the steel plate, initial residual velocity, ballistic limit velocity, energy absorption and plastic deformation of the monolithic and double-layered plates were studied. The results in this paper can provide guidance for the design and application of structural protection using steel plates.


2012 ◽  
Vol 711 ◽  
pp. 259-280 ◽  
Author(s):  
M. R. Moore ◽  
S. D. Howison ◽  
J. R. Ockendon ◽  
J. M. Oliver

AbstractThis paper extends Wagner theory for the ideal, incompressible normal impact of rigid bodies that are nearly parallel to the surface of a liquid half-space. The impactors considered are three-dimensional and have an oblique impact velocity. A formulation in terms of the displacement potential is used to reveal the relationship between the oblique and corresponding normal impact solutions. In the case of axisymmetric impactors, several geometries are considered in which singularities develop in the boundary of the effective wetted region. We present the corresponding pressure profiles and models for the splash sheets.


Sign in / Sign up

Export Citation Format

Share Document