Evaluation of particle size reduction and agglomeration in dry grinding of natural quartz in a planetary ball mill

2020 ◽  
Vol 368 ◽  
pp. 149-159 ◽  
Author(s):  
Pedro L. Guzzo ◽  
Filipe B. Marinho de Barros ◽  
Bruno R. Soares ◽  
Juliano B. Santos
2013 ◽  
Vol 795 ◽  
pp. 711-715 ◽  
Author(s):  
N.Z.F. Mukhtar ◽  
M.Z. Borhan ◽  
Mohamad Rusop ◽  
Saifollah Abdullah

Ball milling is a top down approach and a method to reduce size of particle while Zeolite is a valuable inorganic materials having wide variety of applications. In this paper, ball milling of commercial synthetic Zeolite powder was studied with their time varied. Wet ball milling was selected as a potential means to decrease the particle size of Zeolite over dry grinding. The parameters that included in this study were rotational speed, balls to powder ratio, water to powder ratio and milling time. These nanozeolite were characterized via Zeta-sizer nanoseries of particle sizer, FESEM, and also FTIR. Results showed that commercial synthetic Zeolite powder with particle size larger than 45 μm may be reduced into the size range between 0.2 0.3 μm by planetary ball mill.


2004 ◽  
Vol 126 (4) ◽  
pp. 779-786 ◽  
Author(s):  
Jiann-Cherng Su ◽  
Steven Y. Liang ◽  
Wang Lin Liu ◽  
Tzu Chi Jan

Micro- and nanostructured ceramic materials have received increasing attention in light of the attainable mechanical properties of the resulting components, parts, and products. Stirred ball mill grinding is an important process in reducing the size of ceramic micro- and/or nanoparticles to a desirable range to be used as a constituent for micro- and nanostructured materials. In this study, the time change of particle size of titanium dioxide TiO2 micro- and nanoparticles in the stirred ball mill grinding process is characterized with a fracture mechanics analysis combined with a population balance model. The approach provides both the mean and the statistical distribution of particle sizes produced by ball grinding. It also yields an estimate for the amount of time necessary to achieve a desired particle size. The model examines the effects of process parameters, including the grinding speed, the viscosity of the suspending fluid, and the concentration of the feed as input variables. Experiments performed with TiO2 suspended in ethylene glycol are used for comparison to model predictions for validation. The results show that the initial particle-size reduction rate is relatively high, however, as the particle size decreases, the time required for further reduction increases significantly. Good agreement exists between the model predictions and the experimental results in the context of micro- and nanoparticle-size reduction trends.


2018 ◽  
Vol 60 (1) ◽  
pp. 42-45
Author(s):  
Tuan Quang Nguyen ◽  
Van Lam Nguyen ◽  
Thai Son Nguyen ◽  
Thi Minh Hue Pham ◽  
◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 971
Author(s):  
Oktawian Bialas ◽  
Mateusz Lis ◽  
Anna Woźniak ◽  
Marcin Adamiak

This paper analyses the possibility of obtaining surface-infused nano gold particles with the polyether ether ketone (PEEK) using picosecond laser treatment. To fuse particles into polymer, the raw surface of PEEK was sputtered with 99.99% Au and micromachined by an A-355 laser device for gold particle size reduction. Biomimetic pattern and parameters optimization were key properties of the design for biomedical application. The structures were investigated by employing surface topography in the presence of micron and sub-micron features. The energy of the laser beam stating the presence of polymer bond thermalisation with remelting due to high temperature was also taken into the account. The process was suited to avoid intensive surface modification that could compromise the mechanical properties of fragile cardiovascular devices. The initial material analysis was conducted by power–depth dependence using confocal microscopy. The evaluation of gold particle size reduction was performed with scanning electron microscopy (SEM), secondary electron (SE) and quadrant backscatter electron detector (QBSD) and energy dispersive spectroscopy (EDS) analysis. The visibility of the constituted coating was checked by a commercial grade X-ray that is commonly used in hospitals. Attempts to reduce deposited gold coating to the size of Au nanoparticles (Au NPs) and to fuse them into the groove using a laser beam have been successfully completed. The relationship between the laser power and the characteristics of the particles remaining in the laser irradiation area has been established. A significant increase in quantity was achieved using laser power with a minimum power of 15 mW. The obtained results allowed for the continuation of the pilot study for augmented research and material properties analysis.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2856
Author(s):  
Gary B. Smejkal ◽  
Edmund Y. Ting ◽  
Karthik Nambi Arul Nambi ◽  
Richard T. Schumacher ◽  
Alexander V. Lazarev

Stable, oil-in-water nanoemulsions containing astaxanthin (AsX) were produced by intense fluid shear forces resulting from pumping a coarse reagent emulsion through a self-throttling annular gap valve at 300 MPa. Compared to crude emulsions prepared by conventional homogenization, a size reduction of over two orders of magnitude was observed for AsX-encapsulated oil droplets following just one pass through the annular valve. In krill oil formulations, the mean hydrodynamic diameter of lipid particles was reduced to 60 nm after only two passes through the valve and reached a minimal size of 24 nm after eight passes. Repeated processing of samples through the valve progressively decreased lipid particle size, with an inflection in the rate of particle size reduction generally observed after 2–4 passes. Krill- and argan oil-based nanoemulsions were produced using an Ultra Shear Technology™ (UST™) approach and characterized in terms of their small particle size, low polydispersity, and stability.


Crystals ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 249 ◽  
Author(s):  
Zhen-Yu Yang ◽  
Shih-Kuo Yen ◽  
Wei-Syun Hu ◽  
Yu-Zhe Huang ◽  
Tsung-Mao Yang ◽  
...  

1996 ◽  
Vol 18 (2) ◽  
pp. 121-125 ◽  
Author(s):  
M.P. Nandakumar ◽  
M.S. Thakur ◽  
K.S.M.S. Raghavarao ◽  
N.P. Ghildyal

Sign in / Sign up

Export Citation Format

Share Document