Analyzing bulk density and void fraction: B. Effect of moisture content and compression pressure

2021 ◽  
Vol 381 ◽  
pp. 285-297
Author(s):  
Haim Kalman ◽  
Dmitry Portnikov
2013 ◽  
Vol 2 (6) ◽  
pp. 24
Author(s):  
A. S. Oyerinde ◽  
A. P. Olalusi

<p>The effect of moisture content on some physical and mechanical properties of two varieties of tigernuts (<em>Cyperus esculentus</em>) was investigated. These properties include: geometric dimensions, linear dimensions, 1000 tuber weight, bulk density, tuber size, sphericity, angle of repose, porosity, coefficient of static friction and compressive strength. The moisture content levels used were 20, 25, 30, 35 and 40% wet basis (wb), and the two tigernut varieties used were yellow and brown types. The linear dimension, geometric diameter, sphericity, 1000- tuber weight, bulk density and angle of repose in both varieties increased with increasing moisture content. The average length, width and thickness of the yellow variety increases more than the brown variety at the determined moisture contents. True density of the yellow variety increased while the brown variety decreased with increase in moisture content. The porosity of the yellow variety reduces with increase in moisture content from 45.95 at 20% mc to 42.4 at 40% mc, while the brown variety decreased from 42.72 at 20% mc to 30.77 at 40% moisture content. The yellow variety had bigger size tubers than the brown variety and this has serious implications in packing, handling and transportation issues.</p>


2016 ◽  
Vol 44 (2) ◽  
Author(s):  
Shrikant Baslingappa Swami ◽  
N.J. Thakor A.M. Gawai

<p>The physical properties, viz., geometric diameter, surface area, sphericity, volume, bulk density, true density and angle of repose was measured for  four  cashew varieties <em>viz</em>., <em>Vengurle 1, Vengurle 3, Vengurle 4</em>  and <em>Vengurle 7</em> at different moisture content (15 to 87% db). For <em>Vengurle</em> 1 as the moisture content increased, the physical properties i.e., geometric mean diameter, volume, surface area, true density and angle of repose increased from 20.8 to 22.1 mm, 3485 to 4416 mm<sup>3</sup>, 1355 to 1540 mm<sup>2</sup>, 984 to 1030 kg m<sup>-3</sup> and 32 to 37˚, respectively. The sphericity and bulk density decreased from 74.2 to 71.4 per cent and 490 to 418 kg m<sup>-3</sup> respectively. For <em>Vengurle 3</em> geometric mean diameter, volume, surface area, true density and angle of repose increased from 27.2 to 28.6 mm, 7912 to 9169 mm<sup>3</sup>, 2320 to 2567 mm<sup>2</sup>, 1020 to 1048 kg m<sup>-3</sup> and 33 to 35.5˚, respectively. The sphericity and bulk density decreased from 75.5 to 75.2 per cent and 531 to 470 kg m<sup>-3</sup> respectively. For <em>Vengurle 4</em> the geometric mean diameter, volume, surface area, true density and angle of repose increased from 21.0 to 24.1mm, 3362 to 5113 mm<sup>3</sup>, 1391 to 1828 mm<sup>2</sup>, 970 to 1030 kg m<sup>-3</sup> and 32.5 to 38˚,  respectively. The sphericity and bulk density decreased from 65.8 to 66.8 per cent, 517 to 462 kg m<sup>-3</sup>, respectively. For <em>Vengurle 7</em> the geometric mean diameter, volume, surface area, true density and angle of repose increased from 24.2 to 24.9 mm, 5102 to 5547 mm<sup>3</sup>, 1840 to 1941 mm<sup>2</sup>, 998 to 1045 kg m<sup>-3</sup> and 33 to 38˚, respectively. The sphericity and bulk density decreased from 65.4 to 65.8 per cent, 518 to 438 kg m<sup>-3</sup>, respectively.</p>


Sign in / Sign up

Export Citation Format

Share Document