Simultaneous removal of carbon and nitrogen from municipal-type synthetic wastewater using net-like rotating biological contactor (NRBC)

2006 ◽  
Vol 41 (12) ◽  
pp. 2468-2472 ◽  
Author(s):  
Zhiqiang Chen ◽  
Qinxue Wen ◽  
Jianlong Wang ◽  
Fang Li
2006 ◽  
Vol 54 (2) ◽  
pp. 111-117 ◽  
Author(s):  
A. Alvarado-Lassman ◽  
E. Rustrián ◽  
M.A. García-Alvarado ◽  
E. Houbron

The evaluation of simultaneous removal of carbon and nitrogen in an anaerobic inverse fluidized bed reactor is described. Continuous and batch experiments were used, with synthetic wastewater and glucose as the carbon source with two different nitrate concentrations of 100 and 250 mg N-NO3/L. The evolution of substrates and the concentrations of intermediary products in the gas phase were followed. Results indicate that the use of the biofilm in the inverse fluidized bed reactor allows the expression of denitrification and methanization activities simultaneously without physical or time separation. The removal of nitrogen with both the feeding of 100 and 250 mgN-NO3/L was higher than 90%, while the removal of carbon was 65% on average for the feeding with 100 mgN-NO3/L and 70% on average for the feeding with 250 mg N-NO3/L. This carbon degradation is equivalent to that obtained during the operation of the reactor in the period previous to the nitrate feeding. It was found that by using high values of the COD/N ratio, the dissimilative reduction of nitrates is favoured. Denitrification and anaerobic digestion occurs simultaneously under low values of COD/N.


Author(s):  
Hanyue Wang ◽  
Tong Wang ◽  
Shangye Yang ◽  
Xueqing Liu ◽  
Liqing Kou ◽  
...  

Nitrogen pollution in reservoirs has received increasing attention in recent years. Although a number of aerobic denitrifying strains have been isolated to remove nitrogen from eutrophic waters, the situation in oligotrophic water environments has not received significant attention. In this study, a mixed aerobic denitrifying consortium screened from reservoir samples was used to remove nitrogen in an oligotrophic denitrification medium and actual oligotrophic source water. The results showed that the consortium removed 75.32% of nitrate (NO3−-N) and 63.11% of the total nitrogen (TN) in oligotrophic reservoir water during a 24-h aerobic cultivation. More initial carbon source was helpful for simultaneous removal of carbon and nitrogen in the reservoir source water. NO3−-N and TN were still reduced by 60.93% and 46.56% at a lower temperature (10 °C), respectively, though the rates were reduced. Moreover, adding phosphorus promoted bacterial growth and increased TN removal efficiency by around 20%. The performance of the immobilized consortium in source water was also explored. After 6 days of immobilization, approximately 25% of TN in the source water could be removed by the carriers, and the effects could last for at least 9 cycles of reuse. These results provide a good reference for the use of aerobic denitrifiers in oligotrophic reservoirs.


2012 ◽  
Vol 66 (2) ◽  
pp. 429-437 ◽  
Author(s):  
V. Singh ◽  
A. K. Mittal

A four-stage rotating biological contactor (RBC) was designed and operated to treat synthetic wastewater containing 1,000 mg/l chemical oxygen demand (COD) and 112 mg/l NH4+-N. A mixed culture bacterial biofilm was developed consisting of a heterotrophic bacterium Paracoccus pantotrophus, nitrifiers and other heterotrophs. Applying the peculiar characteristics of P. pantotrophus of simultaneous heterotrophic nitrification and aerobic denitrification, high simultaneous removal of carbon and nitrogen could be achieved in the fully aerobic RBC. The microbial community structure of the RBC biofilm was categorized based on the nitrate reduction, biochemical reactions, gram staining and morphology. The presence of P. pantotrophus within the RBC biofilm was confirmed with an array of biochemical tests. Isolates from the four stages of RBC were grouped into complete denitrifiers, incomplete denitrifiers and non-denitrifiers. This categorization showed a higher relative abundance of P. pantotrophus in the first stage as compared with subsequent stages, in which other nitrifiers and heterotrophs were significantly present. High total nitrogen removal of upto 68% was in conformity with observations made using microbial categorization and biochemical tests. The high relative abundance of P. pantotrophus in the biofilm revealed that it could successfully compete with other heterotrophs and autotrophic nitrifiers in mixed bacterial biomass.


2013 ◽  
Vol 67 (12) ◽  
pp. 2822-2826 ◽  
Author(s):  
J. Qian ◽  
F. Jiang ◽  
H. K. Chui ◽  
Mark C. M. van Loosdrecht ◽  
G. H. Chen

This paper reports an exploratory study on the use of a sulfite-rich industrial effluent to enable the integration of a sulfite–sulfide–sulfate cycle to the conventional carbon and nitrogen cycles in wastewater treatment to achieve sludge minimization through the non-sludge-producing Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI) process. A laboratory-scale sulfite reduction reactor was set up for treating sulfite-rich synthetic wastewater simulating the wastewater from industrial flue gas desulfurization (FGD) units. The results indicated that the sulfite reduction reactor can be started up within 11 d, which was much faster than that using sulfate. Thiosulfate was found to be the major sulfite reduction intermediate, accounting for about 30% of the total reduced sulfur in the reactor effluent, which may enable additional footprint reduction of the autotrophic denitrification reactor in the SANI process. This study indicated that it was possible to make use of the FGD effluent for applying the FGD–SANI process in treating freshwater-based sewage.


2013 ◽  
Vol 69 (2) ◽  
pp. 293-297 ◽  
Author(s):  
Ling-ling Zhao ◽  
Tian-shun Song

A 10 L upflow microbial fuel cell (UMFC) was constructed for simultaneous carbon and nitrogen removal. During the 6-month operation, the UMFC constantly removed carbon and nitrogen, and then generated electricity with synthetic wastewater as substrate. At 5.0 mg L−1 dissolved oxygen, 100 Ω external resistance, and pH 6.5, the maximum power density (Pmax) and nitrification rate for the UMFC was 19.5 mW m−2 and 17.9 mg·(L d)−1, respectively. In addition, Pmax in the UMFC with chicken manure wastewater as substrate was 16 mW m−2, and a high chemical oxygen demand (COD) removal efficiency of 94.1% in the UMFC was achieved at 50 mM phosphate-buffered saline. Almost all ammonia in the cathode effluent was effectively degraded after biological denitrification in the UMFC cathode. The results can help to further develop pilot-scale microbial fuel cells for simultaneous carbon and nitrogen removal.


Sign in / Sign up

Export Citation Format

Share Document