scholarly journals Esterification of Free Fatty Acid on Palm Fatty Acid Distillate using Activated Carbon Catalysts Generated from Coconut Shell

2015 ◽  
Vol 16 ◽  
pp. 365-371 ◽  
Author(s):  
Arif Hidayat ◽  
Rochmadi ◽  
Karna Wijaya ◽  
Arief Budiman
2019 ◽  
Vol 2 (2) ◽  
pp. 99-110
Author(s):  
J.S. Sabarman ◽  
E.H. Legowo ◽  
D.I. Widiputri ◽  
A.R. Siregar

Increasing concern in fossil fuel depletion and CO2 emissions create an urgent need for biofuel substitution. Bio-jet fuel is a possible alternative for conventional jet fuels which currently accounts for 2% of the world’s CO2 emission. Palm Fatty Acid Distillate (PFAD) is the byproduct of palm oil refinery process, which has a potential to become a promising raw material for the synthesis of bioavtur due to its high free fatty acid content. The oil-to-jet pathway is a possible route to produce bioavtur from PFAD, which includes hydrotreating, hydrocracking, and hydroisomerization processes. This research aims to investigate the hydrotreating and hydrocracking processes. The parameters that were investigated are temperature, solvent to PFAD ratio, catalyst loading, and pressure. The parameters variations were as follows: the temperature at 350oC and 400oC, the pressure at 40 bar and 32.5 bar, the solvent to PFAD ratio at 2:1 and 1:1, and the catalyst loading (%wt) at 1%, 2%, and 3%. Presulfided NiMo/γ-Al2O3 PIDO 120 1.3 was used for one-step hydrotreating and hydrocracking processes. Results indicated that the 400oC provided better free fatty acid (FFA) conversion. FFA is also almost completely removed when the catalyst used is 3% weight. Solvent to PFAD ratio affected the FFA conversion marginally, while higher catalyst loading (3%) improved the FFA conversion. Gas chromatography results show that the hydrocarbon chains are successfully hydrocracked into C9-C17. The best selectivity of the product to bioavtur range was calculated at 68.99%. Solvent ratio affects the hydrocracking more significantly than the catalyst loading. One sample with temperature operation 400oC and solvent to PFAD ratio 1:1 was in the range of conventional avtur density. With the method used in this study, it can be concluded that PFAD is a promising raw material for bioavtur. Keywords: Palm Fatty Acid Distillate (PFAD), hydrotreating, hydrocracking, bioavtur


Author(s):  
Hanifrahmawan Sudibyo ◽  
Febbie Setyaningrum ◽  
Rochmadi ◽  
Mohammad Fahrurrozi

As a byproduct of the physical refinement of crude palm oil, palm fatty acid distillate or PFAD has a potential to be transformed into monoglycerides by means of irreversible esterification with glycerol over a cation exchange resin catalyst. Irreversibility of the esterification can be assured by continuous azeotropic removal of water by adding xylene as an entrainer. Because PFAD-glycerol esterification demands high temperatures for fast conversion and high selectivity of monoglycerides, it is necessary to test catalyst reusability performance. In this research, evaluation of catalyst reusability performance was based on five parameters: free fatty acid conversion, the rate of free fatty acid decomposition, the selectivity of monoglycerides, monoglyceride concentration, and the cation exchange capacity of the catalyst. The cation exchange resin used was Tulsion T-42 SM. The evaluation was conducted using the simple multi-attribute rating technique extended to ranking (SMARTER) method. The results showed that the optimum reaction temperature was 180°C. Ultimately, a kinetic study at 180°C was also performed to model the reaction after using similar catalysts for certain times. This kinetic study revealed that the reaction mechanism changed from Langmuir-Hinshelwood to Eley-Rideal after several cycles of catalyst reuse.  


2015 ◽  
Vol 75 ◽  
pp. 969-974 ◽  
Author(s):  
Arif Hidayat ◽  
Rochmadi ◽  
Karna Wijaya ◽  
Annisa Nurdiawati ◽  
Winarto Kurniawan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document