scholarly journals Inverse Determination of Constitutive Equations and Cutting Force Modelling for Complex Tools Using Oxley's Predictive Machining Theory

Procedia CIRP ◽  
2015 ◽  
Vol 31 ◽  
pp. 405-410 ◽  
Author(s):  
B. Denkena ◽  
T. Grove ◽  
M.A. Dittrich ◽  
D. Niederwestberg ◽  
M. Lahres
Author(s):  
S.V. Povorov ◽  
D.V. Egorov ◽  
D.S. Volgin

The change in cutting force in the cutting process of roll-formed section in shaped dies-knife guillotine is studied. It is established that to calculate the cutting force in shaped guillotine, one can use formulas to determine the cutting force of sheet blank on conventional straight knives guillotine.


Author(s):  
LJ. Tanovic ◽  
P. Bojanic ◽  
R. Puzovic ◽  
S. Klimenko

This paper offers an experimental study of the microcutting mechanisms in marble grinding to aid the optimization of the marble grinding process. The necessity for investigating these mechanisms is dictated by the increased use of marble in many applications and the fact that grinding and polishing processes are the dominant technologies used to meet surface finish requirements in this natural material. The experiments are aimed at the determination of the normal component of the cutting force and of the grain traces in microcutting with a single diamond grain. The investigations carried out make provisions for establishing critical grain penetration and cutting depths and allow the prediction of the normal cutting force component as a function of grain penetration speed and depth.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3799-3808
Author(s):  
Ján Melicherčík ◽  
Jozef Krilek ◽  
Pavol Harvánek

This study focused on stress and strain analysis of the cutting force of a branch knife with a replaceable cutting edge. The replaceable edge forms part of the delimbing head, which is applied to the arms of a mechanical harvester working in forestry. Basic parameters of the knife and head of the harvester with the basic calculations necessary to determine the number of knives based on input parameters, such as wood diameter, woody plants, and determination of the cutting force acting on the cutting knife, were examined. Based on the cutting force and the design of the special cutting knife, a stress analysis and a finite element method (FEM) was performed. This study confirmed the correctness of the selected material to produce the delimbing knife, which was designed using a replaceable cutting edge. The output of the stress analysis is reported.


1985 ◽  
Vol 6 ◽  
pp. 215-217 ◽  
Author(s):  
MLtsuo Oh’Izumi ◽  
Tosio Huzioka

Principal stresses in a snow cover on a uniform slope were determined by two methods, each using thin pressure gauges to measure snow pressure in the snow. These snow pressures were principal stress σ2on a vertical plane perpendicular to the contour lines and normal compressive stress σθon a plane perpendicular to the vertical plane. In addition, plastic Poisson’s ratio v was estimated in a snow cover on level ground. Estimates of principal strain rates were used to calculate principal stresses and viscosity by two different methods, using estimates of v and the constitutive equations of Yosida (1980) and the derived values of σ2and σθ.For dry and compact snow, σ1and σ3calculated by both methods agreed well with each other, and also with values obtained by the hole-mark method reported by Shimizu and Huzioka (1975).


2009 ◽  
Vol 407-408 ◽  
pp. 533-537 ◽  
Author(s):  
Yue Feng Yuan ◽  
Wu Yi Chen ◽  
Dong Liu

A methodology to determine the flow stress of material was presented and Johnson–Cook (JC) constitutive model of titanium alloy Ti6Al4V was obtained based on cutting experiment and optimization. This JC model was verified by comparison between simulations with different JC models respectively and experiment. It showed that the accuracy of simulation of cutting force has an increase and the new model is more suitable for cutting simulations. This simple method could improve the accuracy and reliability of the cutting simulation, and could be used to establish the constitutive model of workpiece with more accuracy.


2015 ◽  
Vol 2 (4) ◽  
pp. 233-247 ◽  
Author(s):  
Yung-Chou Kao ◽  
Nhu-Tung Nguyen ◽  
Mau-Sheng Chen ◽  
Shyh-Chour Huang

Abstract In this paper, the cutting force calculation of ball-end mill processing was modeled mathematically. All derivations of cutting forces were directly based on the tangential, radial, and axial cutting force components. In the developed mathematical model of cutting forces, the relationship of average cutting force and the feed per flute was characterized as a linear function. The cutting force coefficient model was formulated by a function of average cutting force and other parameters such as cutter geometry, cutting conditions, and so on. An experimental method was proposed based on the stable milling condition to estimate the cutting force coefficients for ball-end mill. This method could be applied for each pair of tool and workpiece. The developed cutting force model has been successfully verified experimentally with very promising results. Highlights By investigation of the stable cutting conditions in milling process, the linear function of average cutting force and feed per flute was successfully verified. A combined theoretical-experimental method was proposed with an effective model for the determination of cutting force coefficients in ball-end mill process.


Sign in / Sign up

Export Citation Format

Share Document