scholarly journals Prediction of Wind Speed Distribution Using Artificial Neural Network: The Case of Saudi Arabia

2019 ◽  
Vol 163 ◽  
pp. 41-48
Author(s):  
Tayeb Brahimi ◽  
Fatima Alhebshi ◽  
Heba Alnabilsi ◽  
Ahmed Bensenouci ◽  
Mumu Rahman
2015 ◽  
Vol 74 (1) ◽  
Author(s):  
Muhammad Nizam Kamarudin ◽  
Abdul Rashid Husain ◽  
Mohamad Noh Ahmad ◽  
Zaharuddin Mohamed

Accurate modeling of wind speed profile is crucial as the wind speed dynamics are non-deterministic, having chaotic behavior and highly nonlinear in nature. Therefore, obtaining mathematical model of such wind speed profile is rather difficult and vague. In this brief manuscript, the wind speed distribution in Peninsular Malaysia is modeled via the real-time wind data obtained from the Malaysian Meteorological Services (MMS). Artificial neural network (ANN) has been exploited to train the data such that the exact model of wind speed can be identified. The induced wind speed model worthwhile for control engineers to develop control apparatus for wind turbine systems at the selected area of studies. With the wind speed distribution profile, turbine output power can be analyzed and were discussed thoroughly.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3350 ◽  
Author(s):  
Kittipong Kasantikul ◽  
Dongkai Yang ◽  
Qiang Wang ◽  
Aung Lwin

Oceanographic remote sensing, which is based on the sensitivity of reflected signals from the Global Navigation Satellite Systems (GNSS), so-called GNSS-Reflectometry (GNSS-R), is very useful for the observation of ocean wind speed. Wind speed estimation over the ocean is the core factor in maritime transportation management and the study of climate change. The main concept of the GNSS-R technique is using the different times between the reflected and the direct signals to measure the wind speed and wind direction. Accordingly, this research proposes a novel technique for wind speed estimation involving the integration of an artificial neural network and the particle filter based on a theoretical model. Moreover, particle swarm optimization was applied to find the optimal weight and bias of the artificial neural network, in order to improve the accuracy of the estimation result. The observation dataset of the reflected signal information from BeiDou Geostationary Earth Orbit (GEO) satellite number 4 was used as an input for the estimation model. The data consisted of two phases with I and Q components. Two periods of BeiDou data were selected, the first period was from 3 to 8 August 2013 and the second period was from 12 to 14 August 2013, which corresponded to events from the typhoon Utor. The in situ wind speed measurement collected from the buoy station was used to validate the results. A coastal experiment was conducted at the Yangjiang site located in the South China Sea. The results show the ability of the proposed technique to estimate wind speed with a root mean square error of approximately 1.9 m/s.


Author(s):  
Arilson F. G. Ferreira ◽  
Anderson P. de Aragao ◽  
Necio de L. Veras ◽  
Ricardo A. L. Rabelo ◽  
Petar Solic

Solar Energy ◽  
1994 ◽  
Vol 53 (6) ◽  
pp. 473-479 ◽  
Author(s):  
Shafiqur Rehman ◽  
T.O. Halawani ◽  
Tahir Husain

2019 ◽  
Vol 20 (3) ◽  
pp. 800-808
Author(s):  
G. T. Patle ◽  
M. Chettri ◽  
D. Jhajharia

Abstract Accurate estimation of evaporation from agricultural fields and water bodies is needed for the efficient utilisation and management of water resources at the watershed and regional scale. In this study, multiple linear regression (MLR) and artificial neural network (ANN) techniques are used for the estimation of monthly pan evaporation. The modelling approach includes the various combination of six measured climate parameters consisting of maximum and minimum air temperature, maximum and minimum relative humidity, sunshine hours and wind speed of two stations, namely Gangtok in Sikkim and Imphal in the Manipur states of the northeast hill region of India. Average monthly evaporation varies from 0.62 to 2.68 mm/day for Gangtok, whereas it varies from 1.4 to 4.3 mm/day for Imphal during January and June, respectively. Performance of the developed MLR and ANN models was compared using statistical indices such as coefficient of determination (R2), root mean square error (RMSE) and mean absolute error (MAE) with measured pan evaporation values. Correlation analysis revealed that temperature, wind speed and sunshine hour had positive correlation, whereas relative humidity had a negative correlation with pan evaporation. Results showed a slightly better performance of the ANN models over the MLR models for the prediction of monthly pan evaporation in the study area.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ummuhan Basaran Filik

A new hybrid wind speed prediction approach, which uses fast block least mean square (FBLMS) algorithm and artificial neural network (ANN) method, is proposed. FBLMS is an adaptive algorithm which has reduced complexity with a very fast convergence rate. A hybrid approach is proposed which uses two powerful methods: FBLMS and ANN method. In order to show the efficiency and accuracy of the proposed approach, seven-year real hourly collected wind speed data sets belonging to Turkish State Meteorological Service of Bozcaada and Eskisehir regions are used. Two different ANN structures are used to compare with this approach. The first six-year data is handled as a train set; the remaining one-year hourly data is handled as test data. Mean absolute error (MAE) and root mean square error (RMSE) are used for performance evaluations. It is shown for various cases that the performance of the new hybrid approach gives better results than the different conventional ANN structure.


Sign in / Sign up

Export Citation Format

Share Document