scholarly journals Open Hole Tensile Properties of Kenaf Composite and Kenaf/Fibreglass Hybrid Composite Laminates

2013 ◽  
Vol 68 ◽  
pp. 399-404 ◽  
Author(s):  
Z. Salleh ◽  
M.N. Berhan ◽  
Koay Mei Hyie ◽  
Y.M. Taib ◽  
A. Kalam ◽  
...  
2021 ◽  
Vol 31 (3) ◽  
pp. 145-151
Author(s):  
Samer Al Khaddour ◽  
Mohamad Barkat Ibrahim

In this paper, composite and hybrid composite materials were prepared using the hand lay-up method, with carbon, glass, and Kevlar fabrics as the reinforcing materials and epoxy as a matrix. The tensile test was performed to determine the optimal ratio of epoxy resin in carbon fabric/epoxy, glass fabric/epoxy, and Kevlar fabric/epoxy composites in terms of tensile properties. It was found that the optimal ratio of epoxy in terms of tensile properties to impregnate the used Kevlar fabric, glass fabric, and carbon fabric was around 45%wt, 3%wt, and 30 %wt, respectively. The effect of fabric content and stacking sequences, with a fixed epoxy content, on the hybrid composites’ tensile properties were also investigated. The tensile properties of the prepared composites were compared to determine the most favorable preparation conditions for obtaining a hybrid laminate that has high tensile properties and is suitable for a wide range of applications at a low cost.


2015 ◽  
Vol 76 (9) ◽  
Author(s):  
Norazean Shaari ◽  
Aidah Jumahat ◽  
Shahrul Azam Abdullah ◽  
Ahmad Zariff Hadderi

Hybrid laminates consisting of woven Kevlar/glass fiber composite plies were studied in terms of their residual tensile strength, stiffness and fracture surface.  Residual tensile strength and stiffness were determined from the open hole tension test according to ASTM D5766. The laminates of Kevlar fiber reinforced polymer (KFRP), glass fiber reinforced polymer (GFRP) and hybrid of Kevlar-glass fiber reinforced polymer (KGFRP) were fabricated using a vacuum bagging process. Three different ratios of Kevlar to glass fiber plies were prepared in this study which were 20:80, 50:50, and 80:20. Results showed that hybrid laminate consisting of 80:20 Kevlar to glass fiber plies, produced higher residual tensile strength and stiffness when compared to the other hybrid system. Furthermore, strength and stiffness of hole specimens were reduced within 50-63% when compared to unhole specimens due to existence of the hole. In addition, the effect of adding nanosilica to the hybrid system was also studied. 5 wt% of nanosilica was added to the hybrid composite laminates and results showed that higher tensile strength and stiffness was observed in GFRP and 20:80 KGFRP specimens, while the tensile strength was decreased with an increased number of Kevlar fiber. This research was conducted as there are limited number of studies that have been done on the tensile strength of woven hybrid composite laminates so far, especially on hybridization of Kevlar and glass fiber with consideration on the effect of hole and addition of nanofillers.


2020 ◽  
Vol 19 ◽  
pp. 226-232 ◽  
Author(s):  
Jin Sun ◽  
Zhen Jing ◽  
Jian Wu ◽  
Weibo Wang ◽  
Diantang Zhang ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Madhu Puttegowda ◽  
Sanjay Mavinkere Rangappa ◽  
Anish Khan ◽  
Salma Ahmed Al-Zahrani ◽  
Ahmed Al Otaibi ◽  
...  

2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Norazean Shaari ◽  
Aidah Jumahat ◽  
M. Khafiz M. Razif

In this paper, the impact behavior of Kevlar/glass fiber hybrid composite laminates was investigated by performing the drop weight impact test (ASTM D7136). Composite laminates were fabricated using vacuum bagging process with an epoxy matrix reinforced with twill Kevlar woven fiber and plain glass woven fiber. Four different types of composite laminates with different ratios of Kevlar to glass fiber (0:100, 20:80, 50:50 and 100:0) were manufactured. The effect of Kevlar/glass fiber content on the impact damage behavior was studied at 43J nominal impact energy. Results indicated that hybridization of Kevlar fiber to glass fiber improved the load carrying capability, energy absorbed and damage degree of composite laminates with a slight reduction in deflection. These results were further supported through the damage pattern analysis, depth of penetration and X-ray evaluation tests. Based on literature work, studies that have been done to investigate the impact behaviour of woven Kevlar/glass fiber hybrid composite laminates are very limited. Therefore, this research concentrates on the effect of Kevlar on the impact resistance properties of woven glass fibre reinforced polymer composites.


2021 ◽  
Vol 262 ◽  
pp. 113628
Author(s):  
Zhaoyang Ma ◽  
Jianlin Chen ◽  
Qingda Yang ◽  
Zheng Li ◽  
Xianyue Su

2020 ◽  
Vol 11 (1) ◽  
pp. 185
Author(s):  
Jian Shi ◽  
Mingbo Tong ◽  
Chuwei Zhou ◽  
Congjie Ye ◽  
Xindong Wang

The failure types and ultimate loads for eight carbon-epoxy laminate specimens with a central circular hole subjected to tensile load were tested experimentally and simulated using two different progressive failure analysis (PFA) methodologies. The first model used a lamina level modeling based on the Hashin criterion and the Camanho stiffness degradation theory to predict the damage of the fiber and matrix. The second model implemented a micromechanical analysis technique coined the generalized method of cells (GMC), where the 3D Tsai–Hill failure criterion was used to govern matrix failure, and the fiber failure was dictated by the maximum stress criterion. The progressive failure methodology was implemented using the UMAT subroutine within the ABAQUS/implicit solver. Results of load versus displacement and failure types from the two different models were compared against experimental data for the open hole laminates subjected to tensile displacement load. The results obtained from the numerical simulation and experiments showed good agreement. Failure paths and accurate damage contours for the tested specimens were also predicted.


Sign in / Sign up

Export Citation Format

Share Document