scholarly journals Investigation on Static and Dynamic Mechanical Properties of Epoxy Based Woven Fabric Glass/Carbon Hybrid Composite Laminates

2014 ◽  
Vol 97 ◽  
pp. 459-468 ◽  
Author(s):  
R. Murugan ◽  
R. Ramesh ◽  
K. Padmanabhan
2019 ◽  
Vol 6 (10) ◽  
pp. 105343 ◽  
Author(s):  
Parameswara Rao Venkata Doddi ◽  
Ratnam Chanamala ◽  
Siva Prasad Dora

Author(s):  
Dipak Kumar Jesthi ◽  
Abhijeet Nayak ◽  
Santi Swarup Mohanty ◽  
Arun Kumar Rout ◽  
Ramesh Kumar Nayak

2020 ◽  
Vol 14 (3) ◽  
pp. 7162-7169
Author(s):  
Muhamad Shahirul Mat Jusoh ◽  
Mohd Yazid Yahya ◽  
Haris Ahmad Israr Ahmad

Presently, the application of natural fibres widely gains attention from academia and industries as an alternative material in the composite system. The introduction of the hybrid composite using natural and synthetic fibres is extensively investigated on the static mechanical properties. However, the investigation on the high strain-rates effect is less reported due to the difficulty of the experimental set-up as well as the limitation of dynamic testing apparatus. The split Hopkinson pressure bar (SHPB) was utilised in this present study to characterise the dynamic mechanical properties of the hybrid composite between E-glass with jute fibres at three different strain rates of 755, 1363, and 2214 s−1. Results showed that the dynamic compression stress and strain of the tested samples significantly influenced by the value of strain rates applied. The E-glass/jute sample exhibited the strain-rate dependent behaviour, whereby the higher dynamic mechanical properties were recorded when the higher strain rates were imposed. The difference between maximum dynamic stress was 12.1 and 23.9% when the strain rates were increased from 755 to 1363 s−1 and 1363 to 2214 s−1, respectively. In terms of compressive strain, the maximum compressive strain was recorded when the lower strain rates were imposed during testing.


2014 ◽  
Vol 903 ◽  
pp. 96-101 ◽  
Author(s):  
R. Murugan ◽  
R. Ramesh ◽  
K. Padmanabhan ◽  
R. Jeyaraam ◽  
S. Krishna

Woven fabric reinforced polymeric composites are increasingly used in automotive and aircraft application in place of conventional metals due to their high specific strength. However in actual practice while using glass fabric layers, the large nominal size of the component was required and which facilitates increased total weight of the component. In the present investigation, glass laminate is modified and strengthened by interplying high modulus carbon fiber plies for attaining good strength to weight ratio. All laminates were fabricated using hand layup method. Mechanical properties such as tensile, flexural and impact strengths of dedicated and hybrid laminates were evaluated and reported.


Sign in / Sign up

Export Citation Format

Share Document