scholarly journals Optimization of Diesel Fuel and Corn Oil Mixtures Composition

2016 ◽  
Vol 150 ◽  
pp. 225-234 ◽  
Author(s):  
V.A. Markov ◽  
V.G. Kamaltdinov ◽  
S.S. Loboda
Keyword(s):  
Corn Oil ◽  
Author(s):  
Amarlo Banania ◽  
Edwin N. Quiros ◽  
Jose Gabriel E. Mercado

Abstract Continuous demand for energy in order to provide to an ever-increasing global population calls for use of or integration of other alternative sources of fuel other than fossil fuels. Many countries all over the world use vegetable oils blended with neat diesel as alternative and using these biofuels can help alleviate lessen the emissions releases on the environment as well as the country’s dependency on fossil fuels. In the Philippines Coconut Methyl Ester (CME) is the primary vegetable oil used, however in this study we used four other vegetable oils which are RCO (Refined Corn Oil), RPO (Refine Palm Oil), JFO (Jahtropa Filtered Oil) and JME (Jathropa Methyl Ester) in order to investigate the possibility of their use in diesel engines. A 6.3 kW single-cylinder, four stroke cycle, direct injection engine was used for the study. This kind of engine is typically used in the Philippines for different purposes such as backup power for households, for boats, pumps and for agriculture use. The specific fuel consumption of the biodiesel blends compared to neat diesel fuel ranged from −15% to 15% with RCO and JME having higher SFC and JFO and RPO having lower SFC. Fuel conversion efficiency of the varied from −12% to 12% with JFO and RPO having higher efficiency and RCO and JME having lower efficiency. The power of the varied from −7% to 6% with RPO having lower power output, JFO having higher power output and JME and RCO having similar power output to neat diesel fuel. At full load condasition Neat Diesel Fuel blended with 15% Refined Palm Oil showed the greatest improvement in SFC while Neat Diesel Fuel blended with 10% Jathropa Filtered Oil showed the best power output.


Mechanika ◽  
2019 ◽  
Vol 25 (5) ◽  
pp. 413-418
Author(s):  
Gopinath Varudharajan

In the present work on unheated Corn oil methyl ester and Preheated Corn oil methyl ester is used to prepare different concentration blends with diesel, B20, B40 and B60 were used as alternative fuels in a compression ignition engine. The properties like calorific value, flash point, fire point and viscosity of these oils were determined. The viscosity of corn oils has been reduced through transterification process. The waste heat energy from the exhaust gas was reused to preheat the corn oil around 80°C by adjusting the flow rate of exhaust gas.  The performance and emission characteristics of a single cylinder, direct injection diesel engine were determined using unheated corn oil, Preheated Corn oil and diesel. Brake thermal efficiency of preheated B20 was more than other blends and unheated fuels but equal to diesel fuel. Brake specific fuel consumption, CO2 and HC of preheated B20 were less than unheated fuels and diesel. However, the NOx emission of preheated B20 was little higher than unheated fuels and diesel due to high combustion temperature. By considering the result of all the factors, preheated B20 blend was found to be a suitable alternative for diesel fuel.


2019 ◽  
Vol 9 (12) ◽  
pp. 2433 ◽  
Author(s):  
Shiyamala Duraipandian ◽  
Jan C. Petersen ◽  
Mikael Lassen

Adulteration of extra virgin olive oil (EVOO) with cheaper edible oils is of considerable concern in the olive oil industry. The potential of Raman spectroscopy combined with multivariate statistics has been investigated for evaluating the authenticity (or purity) and concentration of EVOO irrespective of it being adulterated with one or more adulterants. The adulterated oil samples were prepared by blending different concentrations of EVOO (10–100% v/v) randomly with cheaper edible oils such as corn, soybean and rapeseed oil. As a result, a Raman spectral database of oil samples (n = 214 spectra) was obtained from 11 binary mixtures (EVOO and rapeseed oil), 16 ternary mixtures (EVOO, rapeseed and corn oil) and 44 quaternary mixtures (EVOO, rapeseed, corn and soybean oil). Partial least squares (PLS) calibration models with 10-fold cross validation were constructed for binary, ternary and quaternary oil mixtures to determine the purity of spiked EVOO. The PLS model on the complex dataset (binary + ternary + quaternary) where the spectra obtained with different measurement parameters and sample conditions can able to determine the purity of spiked EVOO inspite of being blended with one or more cheaper oils. As a proof of concept, in this study, we used single batch of commercial oil bottles for estimating the purity of EVOO. The developed method is not only limited to EVOO, but can be applied to clean EVOO obtained from the production site and other types of food.


2021 ◽  
Vol 779 (1) ◽  
pp. 012062
Author(s):  
Abdulrahman Shakir Mahmood ◽  
Haqi I. Qatta ◽  
Saadi M. D. Al-Nuzal ◽  
Talib Kamil Abed ◽  
Abdulwahab Ahmed Hardan

Sign in / Sign up

Export Citation Format

Share Document