scholarly journals Rock-Mass Movement Monitoring System in Historical Salt Mines, Using the Example of the Bochnia Salt Mine

2017 ◽  
Vol 191 ◽  
pp. 496-503 ◽  
Author(s):  
Agnieszka Maj
2012 ◽  
Vol 57 (1) ◽  
pp. 93-105 ◽  
Author(s):  
Kajetan D’Obyrn

The Wieliczka Salt Mine is the most famous and the most visited mining industry monument in the world and it requires modern methods to ensure rock mass stability and tourists’ security. Both for conservation and tourism organization reasons, the group of Warszawa-Wisla-Budryk-Lebzeltern-Upper Witos Chambers (Photo. 1, 2. 3) located the Kazanów mid-level at a depth of 117 m underground is extremely important. Discontinuous deformation occurring in this Chamber complex was eliminated by comprehensive securing work with anchor housing, but their final securing and stability is conditioned by further backfilling and sealing the Witos Chambers situated directly beneath. In the 1940s and 1950s, the Witos Chamber was backfilled with slag from the mine boilerhouse. However, slags with 80% compressibility are not backfilling material which would ensure the stability of the rock mass. The chambers were exploited in the early nineteenth century in the Spizit salts of the central part of the layered deposit. The condition of the Upper Witos, Wisla, Warszawa, Budryk, and Lebzeltern Chambers is generally good. The western part if the Lebzeltern Chamber (Fig. 1), which was threatened with collapse, was backfilled with sand. In all the chambers of the Witos complex, local deformation of ceiling rock of varying intensity is observed as well as significant destruction of the side walls of pillars between chambers. No hydrogeological phenomena are observed in the chambers. It has been attempted to solve the problem of stability of the rock mass in this region of the mine by extracting the slag and backfilling with sand, erecting concrete supporting pillars, backfilling the voids with sand, anchoring the ceiling and the side walls, the use of the pillar housing. The methods have either not been applied or have been proved insufficient to properly protect the excavation situated above. In order to select the optimal securing method, a geomechanical analysis was conducted in order to determine the condition of the chambers with particular emphasis on the pillars between the chambers. The analysis demonstrated the need to backfilling the Witos Chambers in order to improve the strength parameters of the pillars and the cross-level ledge. The next step consisted of selecting the sealing mix and testing how the additional burden and improving the slag strength parameters shall affect the stability of the excavations of the Kazanów mid-level. In order to determine the optimal composition of the backfilling mixtures, formulas of sealing brine slurries have been developed. Laboratory tests were also conducted concerning the strain parameters specifications of slags extracted from the Witos Chamber. Taking into account the slurry tests, and in particular, the density, strength and strain parameters, the optimal composition of the sealing mix was selected. The analysis of the results of numerical recalculations demonstrate that even the use of highest-density mixtures, backfilling(sealing) of the Witos Chambers should not cause significant disturbance of the current tension in the surrounding rock mass. The longterm impact of sealing should lead to improvement of the strain levels on the ledges between Level III and Kazanów mid-level chambers. The positive results of applying in the Mine of injection slurries for sealing and stabilizing the rock mass and the construction of the injection node on the surface of the Kosciuszko shaft area have allowed resuming work in the Witos Chambers. The main injection over 1,000 m long pipeline was constructed from the injection node through the Kosciuszko Shaft and along Level III of the mine. The sealing of the Witos Chambers complex was divided into three areas (Fig. 2) separated by backfilling dams. Each region was connected to an injection and venting pipeline, and areas of possible injection material off-flow from backfilling locations were secured. Once that the Chambers are sealed with the use of the pipeline seven bore holes will be drilled from excavations situated above through which the sealing slurry will be administered. The operation will serve to eliminate any voids and re-seal the slag, and it will be conducted until pressures of approximately 0.5 MPa on the bore hole collar is achieved. As past experience indicates, injection slurry formula can be regularly adjusted adequately to the changing geomechanical parameters and the type of sealing work at the Wieliczka Mine. Once that the backfilling and sealing process in the Witos Chambers complex is completed, it shall be necessary to conduct monitoring activities in order to determine the processes occurring in the rock mass after the backfilling. The properties of sealing mixtures qualify those for use in the environment both of salt mines and other mineral ore mines to stabilize the rock mass in the mining-geomechanical context precluding the possibility of weakening the rock mass strength parameters and at the same time sealing the rock mass and the loose material deposited in the excavation.


2018 ◽  
Vol 138 (12) ◽  
pp. 525-532
Author(s):  
Masahiko Ito ◽  
Yuya Koyama ◽  
Michiko Nishiyama ◽  
Emi Yanagisawa ◽  
Mariko Hayashi ◽  
...  

2005 ◽  
Vol 42 (4) ◽  
pp. 1105-1115 ◽  
Author(s):  
O Meric ◽  
S Garambois ◽  
D Jongmans ◽  
M Wathelet ◽  
J L Chatelain ◽  
...  

Several geophysical techniques (electromagnetic profiling, electrical tomography, seismic refraction tomography, and spontaneous potential and seismic noise measurement) were applied in the investigation of the large gravitational mass movement of Séchilienne. France. The aim of this study was to test the ability of these methods to characterize and delineate the rock mass affected by this complex movement in mica schists, whose lateral and vertical limits are still uncertain. A major observation of this study is that all the zones strongly deformed (previously and at present) by the movement are characterized by high electrical resistivity values (>3 kΩ·m), in contrast to the undisturbed mass, which exhibits resistivity values between a few hundred and 1 kΩ·m. As shown by the surface observations and the seismic results, this resistivity increase is due to a high degree of fracturing associated with the creation of air-filled voids inside the mass. Other geophysical techniques were tested along a horizontal transect through the movement, and an outstanding coherency appeared between the geophysical anomalies and the displacement rate curve. These preliminary results illustrate the benefits of combined geophysical techniques for characterizing the rock mass involved in the movement. Results also suggest that monitoring the evolution of the rock mass movement with time-lapse geophysical surveys could be beneficial.Key words: gravitational movement, geophysical methods, Séchilienne.


2021 ◽  
pp. 1-13
Author(s):  
Adelina Vevere ◽  
Alexander Oks ◽  
Alexei Katashev ◽  
Galina Terlecka ◽  
Laima Saiva ◽  
...  

BACKGROUND: The manner in which shooters pull the trigger may significantly affect the shooter’s results. Shooting coaches are often not able to detect incorrect pull because of gun movement during the shot and recoil. OBJECTIVE: Development of the smart-textile based trigger pull monitoring system and demonstration of its ability to distinguish correct and wrong triggering techniques. METHODS: Two separated knitted resistive pressure sensors were integrated over III and II phalanges in the index finger fingerstall; single sensor was integrated over both III and II phalanges of the middle finger fingerstall. Resistance of the sensors was measured in a course of shots, performed by expert shooter, which simulated typical novice’s trigger pull errors. RESULTS: Sensors’ resistance recordings were made for following erroneous trigger pull motions: pulling of the trigger with index finger’s II phalanx instead of III; fast and jerky trigger pull (trigger tear-off); too fast release of the trigger after shot; and excessive grip force, applied by middle finger. For each type of erroneous movement, recordings waveforms included distinguishable features that characterised a particular type of error. CONCLUSIONS: The developed trigger pull monitoring system provides signals that could be used for recognition of the incorrect trigger pull motions during gun shots.


2021 ◽  
Author(s):  
Ondřej Racek ◽  
Jan Blahůt ◽  
Filip Hartvich

Abstract. This article describes an innovative, complex and affordable monitoring system designed for joint observation of environmental parameters, rock block dilatations and temperature distribution inside the rock mass with a newly designed 3-meter borehole temperature sensor. Global radiation balance data are provided by pyranometers. The system introduces a novel approach for internal rock mass temperature measurement, which is crucial for the assessment of the changes in the stress field inside the rock slope influencing its stability. The innovative approach uses an almost identical monitoring system at different sites allowing easy setup, modularity and comparison of results. The components of the monitoring system are cheap, off-the-shelf and easy to replace. Using this newly designed system, we are currently monitoring three different sites, where the potential rock fall may endanger society assets below. The first results show differences between instrumented sites, although data time-series are relatively short. Temperature run inside the rock mass differs for each site significantly. This is very likely caused by different aspects of the rock slopes and different rock types. By further monitoring and data processing, using advanced modelling approaches, we expect to explain the differences among the sites, the influence of rock type, aspect and environmental variables on the long-term slope stability.


Author(s):  
Gayaz H. Harisov ◽  
Aleksander G. Zavorotny

The therapeutic effect of people staying in salt mines is currently explained by the fact that people inhale salt spray particulates. Based on an experimental study, the article proves that this therapeutic effect is the result of super-low levels of atomic radiation in the space of salt mines.


2021 ◽  
Author(s):  
Guglielmo Grechi ◽  
Danilo D'Angiò ◽  
Matteo Fiorucci ◽  
Roberto Iannucci ◽  
Luca Lenti ◽  
...  

<p>Rock mass damaging has become a topic of great interest in the engineering-geology research community during the last decades as it can significantly influence slopes stability. In this sense, the study of mechanics and dynamics of jointed rock masses represents a challenge because it will allow to better understand how external continuous and transient stressors can influence the short- to long-term stability controlling their pre-failure behavior. Consequently, the detection of permanent changes in physical and mechanical parameters, due to periodic or transient stressors, is an important target to mitigate the related geological risk as it can potentially lead rock masses to failure, especially when infrastructures and natural or cultural heritages are exposed elements. In this framework, the Acuto field laboratory (Central Italy) has been designed and implemented in 2016 within an abandoned quarry by employing an integrated geotechnical and geophysical monitoring system, with the aim of investigating how natural and anthropic conditioning factors could lead fractured rock masses to failure. The integrated monitoring system, which is installed on a potentially unstable 20-m<sup>3</sup> jointed rock block, is composed of several strain devices (i.e., strain gauges -SG- and jointmeters -JM-), one fully equipped weather station, one rock thermometer, eight high-sensitivity microseismic uniaxial accelerometers and optical and InfraRed Thermal cameras. The acquisition of long-term monitoring time-series, coupling multimethodological approaches, allowed to establish cause-to-effect relationships among different environmental stressors and induced strain effects, highlighting the continuous action of thermal stresses on rock mass deformations both at the daily and seasonal timescales. In fact, while the analysis of thermal and strain monitoring data allowed to characterize the cyclic contraction and relaxation response of major rock fractures and microcracks to temperature fluctuations, the microseismic monitoring array was able to detect during thermal transient (i.e., freezing conditions) the occurrence of microseismic emissions potentially related to the genesis or progressive growth of pre-existing cracks.</p><p>Starting from 2018, experimental activities at the Acuto field lab are supported by the “Dipartimento di Eccellenza” project of the Italian Ministry of Education Universities and Research funds attributed to the Department of Earth Sciences of the University of Rome “Sapienza”.  In this framework, the Acuto filed laboratory will undergo a structural upgrade that will be aimed at the investigation of two new sectors of the abandoned quarry. These new sectors will be instrumented with innovative thermal profiles probe, fiber Brag grating sensors and traditional SG and JM for detailed stress-strain monitoring, acoustic emission sensors and high-frequency and low-frequency geophones for ambient seismic noise monitoring and microseismic events detection as well as accelerometers for evaluating the rock mass response in the case of seismic shaking. The main goal of such an improvement will be both technical and methodological, and will shed light on the application of integrated geophysical and geotechnical monitoring approaches in investigating the multiscale rock mass damaging process as well as the detection of rock mass failure precursors by using non-conventional combinations and configurations of geotechnical and broad-band geophysical devices.</p>


Sign in / Sign up

Export Citation Format

Share Document