scholarly journals A Non-invasive Approach to Monitor Variability of Soil Water Content with Electromagnetic Methods

2013 ◽  
Vol 19 ◽  
pp. 446-455 ◽  
Author(s):  
B. Ortuani ◽  
A. Benedetto ◽  
M. Giudici ◽  
M. Mele ◽  
F. Tosti
2012 ◽  
Vol 120 ◽  
pp. 130-136 ◽  
Author(s):  
S. Mitra ◽  
L. Wielopolski ◽  
R. Omonode ◽  
J. Novak ◽  
J. Frederick ◽  
...  

2016 ◽  
Vol 33 (3) ◽  
Author(s):  
Marcelo Jorge Luz Mesquita ◽  
José Gouvêa Luiz ◽  
José de Paulo Rocha da Costa

ABSTRACT. Electromagnetic methods play an important role in the study of soil water content, mainly because electromagnetic properties in the shallow subsurface area are primarily controlled by the presence of... RESUMO. Os métodos eletromagnéticos são uma importante ferramenta no estudo da umidade do solo, principalmente porque as propriedades eletromagnéticas da subsuperfície rasa são...


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 651 ◽  
Author(s):  
Amir Orangi ◽  
Guillermo A. Narsilio ◽  
Dongryeol Ryu

Soil water content is an important parameter in many engineering, agricultural and environmental applications. In practice, there exists a need to measure this parameter rather frequently in both time and space. However, common measurement techniques are typically invasive, time-consuming and labour-intensive, or rely on potentially risky (although highly regulated) nuclear-based methods, making frequent measurements of soil water content impractical. Here we investigate in the laboratory the effectiveness of four new low-cost non-invasive sensors to estimate the soil water content of a range of soil types. While the results of each of the four sensors are promising, one of the sensors, herein called the “AOGAN” sensor, exhibits superior performance, as it was designed based on combining the best geometrical and electronic features of the other three sensors. The performance of the sensors is, however, influenced by the quality of the sensor-soil coupling and the soil surface roughness. Accuracy was found to be within 5% of volumetric water content, considered sufficient to enable higher spatiotemporal resolution contrast for mapping of soil water content.


2021 ◽  
Vol 117 (2) ◽  
pp. 1
Author(s):  
Urša PEČAN ◽  
Vesna ZUPANC ◽  
Marina PINTAR

Water has a significant influence on fundamental biophysical processes in the soil. It is one of the limiting factors for plant growth, which is why monitoring the water content in the field is particularly important in agriculture. In this article we present the methods currently used to measure the soil water content. We have described their functional principles, advantages, disadvantages and possible applications. Due to their widespread use in agriculture, we have focused on dielectric sensors, which are classified as electromagnetic methods. We have investigated the influence of soil properties on measurements with dielectric sensors and described possible methods for soil-specific calibration. In agriculture and environmental sciences, measurements of soil water content are particularly important for irrigation management. Irrigation based on measurements enables us to optimize the use of water resources and reduce the negative impact on the environment. For the correct functioning of such sensors it is necessary to check the suitability of the factory calibration function. Special attention is required when installing the sensors, as the presence of air gaps causes errors in the measurements.


Author(s):  
M.C.H.Mouat Pieter Nes

Reduction in water content of a soil increased the concentration of ammonium and nitrate in solution, but had no effect on the concentration of phosphate. The corresponding reduction in the quantity of phosphate in solution caused an equivalent reduction in the response of ryegrass to applied phosphate. Keywords: soil solution, soil water content, phosphate, ryegrass, nutrition.


2010 ◽  
Vol 59 (1) ◽  
pp. 157-164 ◽  
Author(s):  
E. Tóth ◽  
Cs. Farkas

Soil biological properties and CO2emission were compared in undisturbed grass and regularly disked rows of a peach plantation. Higher nutrient content and biological activity were found in the undisturbed, grass-covered rows. Significantly higher CO2fluxes were measured in this treatment at almost all the measurement times, in all the soil water content ranges, except the one in which the volumetric soil water content was higher than 45%. The obtained results indicated that in addition to the favourable effect of soil tillage on soil aeration, regular soil disturbance reduces soil microbial activity and soil CO2emission.


Author(s):  
Justyna Szerement ◽  
Aleksandra Woszczyk ◽  
Agnieszka Szyplowska ◽  
Marcin Kafarski ◽  
Arkadiusz Lewandowski ◽  
...  

2014 ◽  
Vol 22 (3) ◽  
pp. 300-307
Author(s):  
Meijun ZHANG ◽  
Wude YANG ◽  
Meichen FENG ◽  
Yun DUAN ◽  
Mingming TANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document