scholarly journals FEBEX In-Situ Test: Preliminary Results of the Geochemical Characterization of the Metal/Bentonite Interface

2017 ◽  
Vol 17 ◽  
pp. 802-805 ◽  
Author(s):  
Elena Torres ◽  
María J. Turrero ◽  
Daniel Moreno ◽  
Lorenzo Sánchez ◽  
Antonio Garralón
Urban Science ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 8
Author(s):  
Cristina Matos ◽  
António Cunha ◽  
Francisco Pereira ◽  
Arminda Gonçalves ◽  
Elisabete Silva ◽  
...  

The characterization of water and energy consumptions is essential in order to define strategies for their rational use. The way these resources are used in households is the path for efficient and rational management, interdependent from each other. It is believed that there are significant differences between the patterns of water and energy consumption in rural and urban areas, where influencing factors should also be identified. This article aims to provide some preliminary results of a research project named ENERWAT, with the main goal to characterize the relation between water and energy consumption at the end use level for urban and rural environments. One of the goals of the aforementioned project was the design, application, and results analysis of a survey, in order to find the main differences in the water and energy consumptions at the end use level and the factors that influence it in urban and rural households. A total of 245 households participated in the research during 2016 (110 urban dwellings and 135 rural), responding to questions on their family composition, dwellings characterization, water and energy consumption habits, and conservation behaviors of these resources. The project also includes the instrumentation and monitoring of dwellings in rural and urban environments to quantify the water consumption and related energy consumption. This stage is still in progress and includes in situ measurements of nine different households (four in rural and five in urban environments) during at least one year. In this article, some of the results obtained by the survey application and the in situ measurements are presented. Despite the large number of data and the associated complexity, it can be concluded that the joint analysis of the results allows identification of a connection between water and energy consumption, as well as a household’s consumption patterns.


1997 ◽  
Vol 506 ◽  
Author(s):  
J.L. Fuentes-Cantillana ◽  
F. Huertas ◽  
J.L. Santiago

ABSTRACTA full-scale “In situ” test is currently being conducted as part of the FEBEX project. This test is being carried out at the Grimsel Test Site in Switzerland and reproduces the “AGP-Granite” concept of the Spanish agency ENRESA for HLW repositories. Two heaters, of the same dimensions and weight as the canisters in the reference concept, have been placed in a horizontal drift of 2,28 m diameter and backfilled with a total of 115.7 t of highly compacted bentonite blocks, up to a total test length of 17 m. More than 600 sensors have been installed in the experiment, which runs basically in an automatic mode and is being remotely controlled and monitored from Spain. This paper addresses the engineering, installation and instrumentation aspects of this test. In addition, some preliminary results are shown


Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 529 ◽  
Author(s):  
Alberto Pérez-Huerta ◽  
Sally E. Walker ◽  
Chiara Cappelli

Bivalve shells are extensively used as bioarchives for paleoclimate and paleoenvironmental reconstructions. Proxy calibrations in recent shells are the basis for sclerochronology and the applications of geochemistry data to fossils. Shell geochemical information, however, could be altered with the disappearance of intercrystalline organic matrix components, including those linked to shell growth increments, during early diagenesis. Thus, an evaluation of the chemistry of such organics is needed for the correct use of sclerochronological records in fossil shells. Here, we use atom probe tomography (APT) for in situ geochemical characterization of the insoluble organic matrix in shell growth increments in the Antarctic scallop, Adamussium colbecki. We confirm the presence of carboxylated S-rich proteoglycans, possibly involved in calcite nucleation and growth in these scallops, with significant concentrations of magnesium and calcium. Diagenetic modification of these organic components could impact proxy data based on Mg/Ca ratios, but more importantly the use of the δ15N proxy, since most of the shell nitrogen is likely bound to the amide groups of proteins. Overall, our findings reinforce the idea that shell organics need to be accounted for in the understanding of geochemical proxies.


2018 ◽  
Vol 3 (3) ◽  
pp. 25 ◽  
Author(s):  
Giovanni Baccolo ◽  
Giannantonio Cibin ◽  
Barbara Delmonte ◽  
Dariush Hampai ◽  
Augusto Marcelli ◽  
...  

The possibility of finding a stratigraphically intact ice sequence with a potential basal age exceeding one million years in Antarctica is giving renewed interest to deep ice coring operations. But the older and deeper the ice, the more impactful are the post-depositional processes that alter and modify the information entrapped within ice layers. Understanding in situ post-depositional processes occurring in the deeper part of ice cores is essential to comprehend how the climatic signals are preserved in deep ice, and consequently how to construct the paleoclimatic records. New techniques and new interpretative tools are required for these purposes. In this respect, the application of synchrotron light to microgram-sized atmospheric dust samples extracted from deep ice cores is extremely promising. We present here preliminary results on two sets of samples retrieved from the Talos Dome Antarctic ice core. A first set is composed by samples from the stratigraphically intact upper part of the core, the second by samples retrieved from the deeper part of the core that is still undated. Two techniques based on synchrotron light allowed us to characterize the dust samples, showing that mineral particles entrapped in the deepest ice layers display altered elemental composition and anomalies concerning iron geochemistry, besides being affected by inter-particle aggregation.


Sign in / Sign up

Export Citation Format

Share Document