scholarly journals Machinability study and multi-response optimization of cutting force, Surface roughness and tool wear on CNC turned Inconel 617 superalloy using Al2O3 Nanofluids in Coconut oil

2019 ◽  
Vol 30 ◽  
pp. 396-403 ◽  
Author(s):  
K. Venkatesan ◽  
Arun Tom Mathew ◽  
S. Devendiran ◽  
Nouby M Ghazaly ◽  
S. Sanjith ◽  
...  
Author(s):  
Emel Kuram

Tool coatings can improve the machinability performance of difficult-to-cut materials such as titanium alloys. Therefore, in the current work, high-speed milling of Ti6Al4V titanium alloy was carried out to determine the performance of various coated cutting tools. Five types of coated carbide inserts – monolayer TiCN, AlTiN, TiAlN and two layers TiCN + TiN and AlTiN + TiN, which were deposited by physical vapour deposition – were employed in the experiments. Tool wear, cutting force, surface roughness and chip morphology were evaluated and compared for different coated tools. To understand the tool wear modes and mechanisms, detailed scanning electron microscope analysis combined with energy dispersive X-ray of the worn inserts were conducted. Abrasion, adhesion, chipping and mechanical crack on flank face and coating delamination, adhesion and crater wear on rake face were observed during high-speed milling of Ti6Al4V titanium alloy. In terms of tool wear, the lowest value was obtained with TiCN-coated insert. It was also found that at the beginning of the machining pass TiAlN-coated insert and at the end of machining TiCN-coated insert gave the lowest cutting force and surface roughness values. No change in chip morphology was observed with different coated inserts.


Author(s):  
S. Vignesh ◽  
U. Mohammed Iqbal

This paper is concentrated on the exploration of carbonaceous nanocutting fluids with the concept of tri-hybridization with improved lubricative and cooling properties by using multi-walled carbon nanotubes, hexagonal boron nitride , and graphene nanoparticles with neat cold-pressed coconut oil in a fixed volumetric proportion. The rheological properties of the nanofluids were studied to assess their performance in real-time end milling operations using an AA7075 work piece on a CNC lathe machine under a minimum quantity lubrication environment. At the outset, the carbonaceous nanofluids gave good performance when compared to conventional cutting fluids. Furthermore, the surfaces of the tribo-pairs and the chips formed were analyzed using a profilometer and high-end microscopes. The results obtained from the experiments confirm that the tri-hybridized carbonaceous nanolubricant has reduced the cutting force, tool wear, and surface roughness when correlated to monotype nanofluids. The scanning electron microscope images of the surface and tool were studied and it was found that the surface quality was maintained while end milling with tri-hybridized carbonaceous nanofluid. Improvement of ∼17%, 20% and 25% in cutting forces, surface roughness and tool wear was found in tri-hybrid fluid when compared to other fluids. Thus, the present work indicates that the addition of carbon-based nanoparticles with coconut oil has offered better performance and is found to be a credible alternative to existing conventional cutting fluids.


2010 ◽  
Vol 102-104 ◽  
pp. 653-657 ◽  
Author(s):  
Xu Hong Guo ◽  
Li Jun Teng ◽  
Wei Wang ◽  
Ting Ting Chen

In recent years, the machinability of magnesium alloy is concerned more and more by the public. In this paper, a study on the cutting properties of magnesium alloy AZ91D when dry turning with kentanium cutting tools is presented. It shows the cutting force measured by a data acquisition system which is made up of Kistler9257B piezoelectric crystal sensor dynamometer, Kistler5070A10100 charge amplifier and computer. The effect of cutting parameters on cutting force was studied, and the experimental formula was built. The tool wear and chip characteristics were observed with KYKY-EM3200 electron scanning microscope and EDAX PV9900 alpha ray spectrometer, while the surface roughness of the workpiece was measured with 2205 profilometer. Results showed that the cutting depth was the main influence factor on cutting force, followed by feed rate and cutting speed . The main form of tool wear showed to be diffusive wear and adhesive wear. The feed rate had the main influence on chip form and the workpiece surface roughness, cutting speed was less effective, the cutting depth was the least.


2019 ◽  
Vol 33 (11) ◽  
pp. 5393-5398 ◽  
Author(s):  
Yuan Li ◽  
Guangming Zheng ◽  
Xu Zhang ◽  
Xiang Cheng ◽  
Xianhai Yang ◽  
...  

2016 ◽  
Vol 861 ◽  
pp. 26-31 ◽  
Author(s):  
Peng Guo ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Jun Wang ◽  
Han Lian Liu ◽  
...  

The milling of AISI 321 stainless steel which has wide engineering applications particularly in automobile, aerospace and medicine is of great importance especially in the conditions where high surface quality is required. In this paper, L16 orthogonal array design of experiments was adopted to evaluate the machinability of AISI 321 stainless steel with coated cemented carbide tools under finish dry milling conditions, and the influence of cutting speed ( V ), feed rate ( f ) and depth of cut ( ap ) on cutting force, surface roughness and tool wear was analysed. The experimental results revealed that the cutting force decreased with an increase in the cutting speed and increased with an increase in the feed rate or the depth of cut. The tool wear was affected significantly by the cutting speed and the depth of cut, while the effect of the feed rate on the tool wear was insignificant. With the cutting speed increased up to 160 m/min, a decreasing tendency in the surface roughness was observed, but when the cutting speed was further increased, the surface roughness increased. The effect of the feed rate and the depth of cut on the surface roughness was slight.


Sign in / Sign up

Export Citation Format

Share Document