Design parameters of polylactic acid custom trays manufactured by fused deposition modeling for partial edentulism: Consideration of the accuracy of the definitive cast

Author(s):  
Hong Li ◽  
Kenan Ma ◽  
Yuchun Sun ◽  
Hu Chen
2021 ◽  
Vol 13 (4) ◽  
pp. 1875
Author(s):  
Emmanuel Ugo Enemuoh ◽  
Venkata Gireesh Menta ◽  
Abdulaziz Abutunis ◽  
Sean O’Brien ◽  
Labiba Imtiaz Kaya ◽  
...  

There is limited knowledge about energy and carbon emission performance comparison between additive fused deposition modeling (FDM) and consolidation plastic injection molding (PIM) forming techniques, despite their recent high industrial applications such as tools and fixtures. In this study, developed empirical models focus on the production phase of the polylactic acid (PLA) thermoplastic polyester life cycle while using FDM and PIM processes to produce American Society for Testing and Materials (ASTM) D638 Type IV dog bone samples to compare their energy consumption and eco-impact. It was established that energy consumption by the FDM layer creation phase dominated the filament extrusion and PLA pellet production phases, with, overwhelmingly, 99% of the total energy consumption in the three production phases combined. During FDM PLA production, about 95.5% of energy consumption was seen during actual FDM part building. This means that the FDM process parameters such as infill percentage, layer thickness, and printing speed can be optimized to significantly improve the energy consumption of the FDM process. Furthermore, plastic injection molding consumed about 38.2% less energy and produced less carbon emissions per one kilogram of PLA formed parts compared to the FDM process. The developed functional unit measurement models can be employed in setting sustainable manufacturing goals for PLA production.


Author(s):  
Martin Hallmann ◽  
Benjamin Schleich ◽  
Sandro Wartzack

AbstractWhen using additive manufacturing processes, the choice of the numerous settings for the process and design parameters significantly influences the build and production time. To reduce the required build time, it is useful to adapt the parameters with the greatest influence. However, since the contribution of the individual parameters is not readily apparent, a sensible choice of process and design parameters can become a challenging task.Thus, the following article presents a method, that enables the product developer to determine the main contributors to the required build time of additively manufactured products. By using this sensitivity analysis method, the contributors of the individual parameters can be analyzed for a given parametrized CAD model with the help of an analysis-based build time estimation approach. The novelty of the contribution can be found in providing a method that allows studying both design and process parameters simultaneously, taking the machine to be used into account. The exemplary application of the presented method to a sample part manufactured by Fused Deposition Modeling demonstrates its benefits and applicability.


2016 ◽  
Vol 78 (10) ◽  
Author(s):  
Nor Aiman Sukindar ◽  
M. K. A. Ariffin ◽  
B. T. Hang Tuah Baharudin ◽  
Che Nor Aiza Jaafar ◽  
Mohd Idris Shah Ismail

Fused deposition modeling (FDM) is one of the Rapid Prototyping (RP) technologies. The 3D Printer has been widely used in the fabrication of 3D products. One of the main issues has been to obtain a high quality for the finished parts. The present study focuses on the effect of nozzle diameter in terms of pressure drop, geometrical error as well as extrusion time. While using polylactic acid (PLA) as a material, the research was conducted using Finite Element Analysis (FEA) by manipulating the nozzle diameter, and the pressure drop along the liquefier was observed. The geometrical error and printing time were also calculated by using different nozzle diameters. Analysis shows that the diameter of the nozzle significantly affects the pressure drop along the liquefier which influences the consistency of the road width thus affecting the quality of the product’s finish. The vital aspect is minimizing the pressure drop to be as low as possible, which will lead to a good quality final product. The results from the analysis demonstrate that a 0.2 mm nozzle diameter contributes the highest pressure drop, which is not within the optimum range. In this study, by considering several factors including pressure drop, geometrical error and printing time, a 0.3 mm nozzle diameter has been suggested as being in the optimum range for extruding PLA material using open-source 3D printing. The implication of this result is valuable for a better understanding of the melt flow behavior of the PLA material and for choosing the optimum nozzle diameter for 3D printing.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 466 ◽  
Author(s):  
Yiqiao Wang ◽  
Wolf-Dieter Müller ◽  
Adam Rumjahn ◽  
Andreas Schwitalla

In this review, we discuss the parameters of fused deposition modeling (FDM) technology used in finished parts made from polyether ether ketone (PEEK) and also the possibility of printing small PEEK parts. The published articles reporting on 3D printed PEEK implants were obtained using PubMed and search engines such as Google Scholar including references cited therein. The results indicate that although many have been experiments conducted on PEEK 3D printing, the consensus on a suitable printing parameter combination has not been reached and optimized parameters for printing worth pursuing. The printing of reproducible tiny-sized PEEK parts with high accuracy has proved to be possible in our experiments. Understanding the relationships among material properties, design parameters, and the ultimate performance of finished objects will be the basis for further improvement of the quality of 3D printed medical devices based on PEEK and to expand the polymers applications.


Sign in / Sign up

Export Citation Format

Share Document