Relation between ABCB1 overexpression and COX2 and ALOX5 genes in human erythroleukemia cell lines

Author(s):  
Mariana Teixeira Santos Figueiredo Salgado ◽  
Alessandra Costa Lopes ◽  
Estela Fernandes e Silva ◽  
Julia Quarti Cardoso ◽  
Raphael Silveira Vidal ◽  
...  
2005 ◽  
Vol 16 (6) ◽  
pp. 635-643 ◽  
Author(s):  
Sybille Wittich ◽  
Hans Scherf ◽  
Changping Xie ◽  
Birgit Heltweg ◽  
Franck Dequiedt ◽  
...  

Blood ◽  
1984 ◽  
Vol 64 (4) ◽  
pp. 930-936 ◽  
Author(s):  
I Max-Audit ◽  
U Testa ◽  
D Kechemir ◽  
M Titeux ◽  
W Vainchenker ◽  
...  

To further investigate the erythroid nature of the two human erythroleukemia cell lines, K562 and HEL-60, and to define the ontogeny of pyruvate kinase (PK) isozymes (R, M2) in developing human erythroid cells, we have studied the isozymic alterations, if any, during differentiation of these cell lines in vitro and normoblasts isolated from fetal liver in vivo. PK activity of erythroleukemic cell lines was intermediate between that observed in leukocytes and in fetal liver erythroblasts. These cell lines contained a high level of M2-PK, but R- PK was always present, albeit at low concentrations, in all the clones or subclones we studied. Erythroblasts from fetal liver were separated according to density on a Stractan gradient. R-PK levels were nearly constant in the different fractions, whereas M2-PK levels markedly decreased as the erythroblasts became mature and almost completely disappeared in late erythroid cells. Thus, these results clearly demonstrate the erythroid origin of these cell lines.


Blood ◽  
1984 ◽  
Vol 64 (4) ◽  
pp. 930-936 ◽  
Author(s):  
I Max-Audit ◽  
U Testa ◽  
D Kechemir ◽  
M Titeux ◽  
W Vainchenker ◽  
...  

Abstract To further investigate the erythroid nature of the two human erythroleukemia cell lines, K562 and HEL-60, and to define the ontogeny of pyruvate kinase (PK) isozymes (R, M2) in developing human erythroid cells, we have studied the isozymic alterations, if any, during differentiation of these cell lines in vitro and normoblasts isolated from fetal liver in vivo. PK activity of erythroleukemic cell lines was intermediate between that observed in leukocytes and in fetal liver erythroblasts. These cell lines contained a high level of M2-PK, but R- PK was always present, albeit at low concentrations, in all the clones or subclones we studied. Erythroblasts from fetal liver were separated according to density on a Stractan gradient. R-PK levels were nearly constant in the different fractions, whereas M2-PK levels markedly decreased as the erythroblasts became mature and almost completely disappeared in late erythroid cells. Thus, these results clearly demonstrate the erythroid origin of these cell lines.


Blood ◽  
1991 ◽  
Vol 77 (12) ◽  
pp. 2577-2582 ◽  
Author(s):  
HL Atkins ◽  
VC Broudy ◽  
T Papayannopoulou

Abstract Erythropoietin (Epo) regulates the growth and differentiation of erythroid cells by binding to a specific receptor. We characterized the native Epo receptor on erythroleukemia cell lines by ligand blotting. Solubilized cell membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred onto nitrocellulose, and probed with 125I-Epo. Specificity was demonstrated by inhibition of 125I-Epo binding by unlabeled excess Epo but not other peptide growth factors and by the cellular distribution of the Epo binding protein. A single membrane protein of 61 Kd +/- 4 Kd was sufficient to bind 125I Epo in both human (OCIM2, K562) and murine (GM979, Rauscher, DA-1) cell lines. This finding is consistent with the predicted size of the Epo receptor from the murine cDNA clone. However, chemical crosslinking of 125I-Epo to its receptor has identified two Epo binding proteins of 105 Kd and 85 Kd. This difference may occur because the receptor is size fractionated before Epo binding in the ligand blot, but after Epo binding in crosslinking studies. Ligand blotting demonstrates that the native Epo receptor is composed of a single 61-Kd Epo binding protein, and suggests the presence of additional proteins of 20 to 25 Kd that associate with the receptor after Epo binding.


1993 ◽  
Vol 13 (5) ◽  
pp. 2776-2786 ◽  
Author(s):  
I J Miller ◽  
J J Bieker

We describe a novel erythroid cell-specific cDNA (EKLF [erythroid Krüppel-like factor]) isolated by enriching for genes expressed in a mouse erythroleukemia cell line but not expressed in a mouse monocyte-macrophage cell line. The complete cDNA sequence is predicted to encode a protein of approximately 38,000 Da that contains a proline-rich amino domain and three TFIIIA-like zinc fingers within the carboxy domain. Additional sequence analyses reveal that the EKLF zinc fingers are most homologous to the Krüppel family of transcription factors and also allow us to predict potential DNA-binding target sites for the EKLF protein. On the basis of this prediction, we show that EKLF is able to bind the sequence CCA CAC CCT, an essential element of the beta-globin promoter. Its tissue distribution establishes that the EKLF transcript is expressed only in bone marrow and spleen, the two hematopoietic organs of the mouse, and analysis of murine cell lines indicates that EKLF expression is limited to erythroid and mast cell lines. Cotransfection assays establish that EKLF transcriptionally activates a target promoter that contains its DNA-binding site. The tissue expression pattern of EKLF, in conjunction with its function as a transcriptional activator, strongly suggests that the EKLF protein may be intimately involved in establishment and/or maintenance of the erythroid cell phenotype.


Sign in / Sign up

Export Citation Format

Share Document