scholarly journals Failure analysis of masonry arch with no-horizontal support settlement

2018 ◽  
Vol 11 ◽  
pp. 436-443 ◽  
Author(s):  
Paolo Zampieri ◽  
Nicolò Simoncello ◽  
Cyrille Denis Tetougueni ◽  
Carlo Pellegrino
Meccanica ◽  
2021 ◽  
Author(s):  
Marialaura Malena ◽  
Maurizio Angelillo ◽  
Antonio Fortunato ◽  
Gianmarco de Felice ◽  
Ida Mascolo

AbstractSettlements severely affect historic masonry arch bridges worldwide. There are countless examples of structural dislocations and ruins in recent years due to severe settlements at the base of pier foundations, often caused by shipworm infestation of wooden foundations or scouring and riverbed erosion phenomena. The present paper proposes an original way to approach the failure analysis of settled masonry arch bridges. The proposed method combines two different 2D numerical models for the prediction of masonry arch bridge capacity against settlements and for safety assessment. The first one is the Piecewise Rigid Displacement method, i.e. a block-based limit analysis approach using the well known Heyman's hypotheses; the second one is a continuous Finite Element approach. The case study of the four-span Deba Bridge (Spain, 2018) failure is presented with the aim to illustrate how the methods work. The failure analysis produced satisfactory results by applying both methods separately, in confirmation of their reliability. Their combination also allowed to obtain a significantly reduction in computational cost and an improvement of prediction accuracy. A sensitivity and a path-following analysis were also performed with the aim to demonstrate the robustness of the presented method. The obtained simulations highlighted that the results do not depend on the friction angle and that a proper prediction of the evolution of the structural behavior can be obtained only taking into account geometric nonlinearities. Such results demonstrate once again that in settled masonry arches geometry prevails over the mechanical parameters. The current study paves the way for the fruitful use of the proposed approaches for a wider range of applications, as, for example, the mechanism identification or the displacement capacity assessment of masonry structures under overloading as seismic loads.


2015 ◽  
Vol 57 ◽  
pp. 31-55 ◽  
Author(s):  
Otello Bergamo ◽  
Giuseppe Campione ◽  
Stefano Donadello ◽  
Gaetano Russo

2017 ◽  
Vol 79 ◽  
pp. 371-384 ◽  
Author(s):  
Paolo Zampieri ◽  
Mariano Angelo Zanini ◽  
Flora Faleschini ◽  
Lorenzo Hofer ◽  
Carlo Pellegrino

Author(s):  
John R. Devaney

Occasionally in history, an event may occur which has a profound influence on a technology. Such an event occurred when the scanning electron microscope became commercially available to industry in the mid 60's. Semiconductors were being increasingly used in high-reliability space and military applications both because of their small volume but, also, because of their inherent reliability. However, they did fail, both early in life and sometimes in middle or old age. Why they failed and how to prevent failure or prolong “useful life” was a worry which resulted in a blossoming of sophisticated failure analysis laboratories across the country. By 1966, the ability to build small structure integrated circuits was forging well ahead of techniques available to dissect and analyze these same failures. The arrival of the scanning electron microscope gave these analysts a new insight into failure mechanisms.


Author(s):  
Evelyn R. Ackerman ◽  
Gary D. Burnett

Advancements in state of the art high density Head/Disk retrieval systems has increased the demand for sophisticated failure analysis methods. From 1968 to 1974 the emphasis was on the number of tracks per inch. (TPI) ranging from 100 to 400 as summarized in Table 1. This emphasis shifted with the increase in densities to include the number of bits per inch (BPI). A bit is formed by magnetizing the Fe203 particles of the media in one direction and allowing magnetic heads to recognize specific data patterns. From 1977 to 1986 the tracks per inch increased from 470 to 1400 corresponding to an increase from 6300 to 10,800 bits per inch respectively. Due to the reduction in the bit and track sizes, build and operating environments of systems have become critical factors in media reliability.Using the Ferrofluid pattern developing technique, the scanning electron microscope can be a valuable diagnostic tool in the examination of failure sites on disks.


Sign in / Sign up

Export Citation Format

Share Document