scholarly journals Preparation of Zinc Oxide Nanoparticles and its Characterization Using Scanning Electron Microscopy (SEM) and X-Ray Diffraction(XRD)

2016 ◽  
Vol 24 ◽  
pp. 761-766 ◽  
Author(s):  
Ananthu C. Mohan ◽  
B. Renjanadevi
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Maged S. Al-Fakeh ◽  
Roaa O. Alsaedi

Cobalt oxide nanoparticles (CoO NPs) were synthesized by the calcination method from the Co (II) complex which has the formula [Co(PVA)(P-ABA)(H2O)3], PVA = polyvinyl alcohol, and P-ABA = para-aminobenzoic acid. The calcination temperature was 550°C, and the products were characterized by element analysis, thermal analyses (TGA and DTA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV-Vis spectra, and scanning electron microscopy (SEM) techniques. The kinetic and thermodynamic parameters (∆H   ∗ , ∆G   ∗ , and ∆S   ∗ ) for the cobalt (II) complex are calculated. The charges been carried by the atoms cause dipole moment 10.53 and 3.84 debye and total energy 11.04 × 102 and 24.80 × 102k Cal mol−1 for the Co (II) complex and cobalt oxide, respectively. X-ray diffraction confirmed that the resulting oxide was pure single-crystalline CoO nanoparticles. Scanning electron microscopy indicating that the crystallite size of cobalt oxide nanocrystals was in the range of 36–54 nm. Finally, the antimicrobial activity of cobalt oxide nanoparticles was evaluated using four bacterial strains and one fungal strain. Two strains of Gram-positive cocci (Staphylococcus aureus and Enterococcus faecalis), two strains of Gram-negative bacilli (Escherichia coli and Pseudomonas aeruginosa), and one strain of yeast such as fungi (Candida albicans) were used in this study.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4424 ◽  
Author(s):  
Mehrdad Khatami ◽  
Mina Sarani ◽  
Faride Mosazadeh ◽  
Mohammadreza Rajabalipour ◽  
Alireza Izadi ◽  
...  

Nanoparticles of cerium oxide CeO2 are important nanomaterials with remarkable properties for use in both industrial and non-industrial fields. In a general way, doping of oxide nanometric with transition metals improves the properties of nanoparticles. In this study, nickel- doped cerium oxide nanoparticles were synthesized from Stevia rebaudiana extract. Both doped and non-doped nanoparticles were characterized by X-ray diffraction, Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray, Raman spectroscopy, and Vibrating-Sample Magnetometry analysis. According to X-ray diffraction, Raman and Energy Dispersive X-ray crystalline and single phase of CeO2 and Ni doped CeO2 nanoparticles exhibiting fluorite structure with F2g mode were synthesized. Field Emission Scanning Electron Microscopy shows that CeO2 and Ni doped nanoparticles have spherical shape and sizes ranging of 8 to 10 nm. Ni doping of CeO2 results in an increasing of magnetic properties. The enhancement of ultraviolet protector character via Ni doping of CeO2 is also discussed.


Biomolecules ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 38 ◽  
Author(s):  
Banzeer Ahsan Abbasi ◽  
Javed Iqbal ◽  
Riaz Ahmad ◽  
Layiq Zia ◽  
Sobia Kanwal ◽  
...  

This study attempts to obtain and test the bioactivities of leaf extracts from a medicinal plant, Geranium wallichianum (GW), when conjugated with zinc oxide nanoparticles (ZnONPs). The integrity of leaf extract-conjugated ZnONPs (GW-ZnONPs) was confirmed using various techniques, including Ultraviolet–visible spectroscopy, X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, energy-dispersive spectra (EDS), scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The size of ZnONPs was approximately 18 nm, which was determined by TEM analysis. Additionally, the energy-dispersive spectra (EDS) revealed that NPs have zinc in its pure form. Bioactivities of GW-ZnONPs including antimicrobial potentials, cytotoxicity, antioxidative capacities, inhibition potentials against α-amylase, and protein kinases, as well as biocompatibility were intensively tested and confirmed. Altogether, the results revealed that GW-ZnONPs are non-toxic, biocompatible, and have considerable potential in biological applications.


2021 ◽  
Vol 1 (3) ◽  
pp. 176-189
Author(s):  
Prathima Prabhu Tumkur ◽  
Nithin Krisshna Gunasekaran ◽  
Babu R. Lamani ◽  
Nicole Nazario Bayon ◽  
Krishnan Prabhakaran ◽  
...  

Due to its excellent physicochemical properties, cerium oxide (CeO2) has attracted much attention in recent years. CeO2 nanomaterials (nanoceria) are widely being used, which has resulted in them getting released to the environment, and exposure to humans (mostly via inhalation) is a major concern. In the present study, CeO2 nanoparticles were synthesized by hydroxide-mediated method and were further characterized by Scanning Electron Microscopy (SEM), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction Spectroscopy (XRD). Human lung epithelial (Beas-2B) cells were used to assess the cytotoxicity and biocompatibility activity of CeO2 nanoparticles. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) and Live/Dead assays were performed to determine the cytotoxicity and biocompatibility of CeO2 nanoparticles. Generation of reactive oxygen species (ROS) by cerium oxide nanoparticles was assessed by ROS assay. MTT assay and Live/Dead assays showed no significant induction of cell death even at higher concentrations (100 μg per 100 μL) upon exposure to Beas-2B cells. ROS assay revealed that CeO2 nanoparticles did not induce ROS that contribute to the oxidative stress and inflammation leading to various disease conditions. Thus, CeO2 nanoparticles could be used in various applications including biosensors, cancer therapy, catalytic converters, sunscreen, and drug delivery.


2005 ◽  
Vol 19 (15n17) ◽  
pp. 2722-2727
Author(s):  
Y. J. XING ◽  
D. P. YU ◽  
Z. H. XI ◽  
Z. Q. XUE

We demonstrate the synthesis of zinc oxide microshells by thermal evaporation of ZnO and Zn powders. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) observations reveal that the products are ZnO microshells with hollow cores, of which the wall thickness is about several hundred nanometers. The possible growth process is discussed.


2020 ◽  
Vol 90 (21-22) ◽  
pp. 2492-2503
Author(s):  
MA Mousa ◽  
M Khairy

A liquid precipitation method was used to prepare zinc oxide nanoparticles in three diverse media: water, methanol, and ethylene glycol. The studied materials were examined by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy. X-ray diffraction patterns showed a hexagonal Wurtzite structure of zinc oxide with a nanocrystalline size. Acquired powders showed different morphologies (rod, star, and spherical structures), which were affected by the nature of the solvent in the reaction. The different zinc oxide powders have varied optical band gaps. Scanning electron microscopy examinations confirmed the arrangement of nano-zinc oxide on the surfaces of the materials. The zinc oxide-covering procedure was carried out on cotton, polyester, and 50/50 wt% polyester/cotton blended fabrics using a simple dip and curing system. The cotton fabric treated with nanorod zinc oxide exhibited the highest ultraviolet protection factor with a value of 247.2. The antimicrobial properties of untreated and treated fabrics with nano-zinc oxide were measured against Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcus aureus), and diploid fungus (Candida albicans). The results showed the antimicrobial action relies on the morphological structure and the particle size of zinc oxide and that it increases with a reduced particle size. The cotton fabric treated with 26 nm nonspherical zinc oxide particles showed the highest antimicrobial efficiency with values of 91.4%, 86.8%, and 84.7% for Staphylococcus aureus, Escherichia coli, and Candida albicans, respectively. The mechanical properties of treated fabrics were studied. The results confirm that nano-zinc oxide is highly useful for improving the performance of defense textile products because of its biocompatibility, environmental friendliness, and nontoxicity.


Author(s):  
Palaniappan Ramasamy ◽  
Ramachandran Krishnakumar ◽  
Ravichandran Rekha ◽  
Baskaralingam Vaseeharan ◽  
K. Saraswathi ◽  
...  

Graphical AbstractFlow chart depicting the methods, preparing, and characterizing, by histological, and scanning electron microscopy, of wet (PW-HAM) and dry (PD-HAM)of wound healing dressing, and preparation of nanoparticles (HAMP ZnO NP); and application of HAM wound dressing.


2011 ◽  
Vol 197-198 ◽  
pp. 362-366
Author(s):  
Zhi Mei Xia ◽  
Cui Feng Wan ◽  
Sheng Ming Jin ◽  
Mo Tang Tang

Tetra-needle-like zinc oxide whiskers (T-ZnOW) were coated with Zn and stabilized with Al2O3consequently. Coating conditions for preparation of low resistivity T-ZnOW were investigated. The Zn-coated T-ZnOW was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrical resistance measurement. The SEM and XRD results indicated that the tetra-needle-like structure of ZnO whiskers could be well maintained after coating with Zn and stabilizing with Al2O3. Experiment results showed that the resistivity of T-ZnOW was affected significantly by the annealing temperature, annealing time, coating amount of Zn and original content of Al3+. Al3+ions played an important role in stabilizing the resistivity of Zn-coated T-ZnOW. The resistivity of T-ZnOW decreased considerably from 108to 101Ω•cm when the Zn-coated amount and Al3+original content were 10.0 wt.% and 2.0 at.%, respectively.Introduction.


2018 ◽  
Vol 42 (1) ◽  
pp. 18-22
Author(s):  
Khitam S. S

     This research aims to prepare ZnO NPs by using chemical bath deposition way from ZnSO4 and NaOH as starting materials. It was examined by X-ray diffraction, Scanning Electron Microscopy, Zeta potential and Fourier Transformation Infrared. Scanning Electron Microscopy images showed various morphological changes of ZnO nanoparticles obtained by the above method and the different magnification Scanning Electron Microscopy images of the nanoparticle and confirms that the Nano flowers are grown with well-defined morphology and diameters varying between 60-110 nm. The effect of Zinc oxide nanoparticles against bacteria staphylococcus aureus, E.coli and Pseudomous aeruginosa showed the ability of this substance to inhibit the growth of all types of bacteria in different concentrations. The percentage of survival bacteria was (2, 3.7 and 6%) for E.coli bacteria and (1, 1.5 and 5 %) for Pseudomous aeruginosa bacteria, while the percentage was (0.8, 1 and 1.5 %) for staphylococcus aurous respectively for all concentration.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Sign in / Sign up

Export Citation Format

Share Document