Multi-laboratory proficiency testing of clinical cancer genomic profiling by next-generation sequencing

2018 ◽  
Vol 214 (7) ◽  
pp. 957-963 ◽  
Author(s):  
Qing Zhong ◽  
Ulrich Wagner ◽  
Henriette Kurt ◽  
Francesca Molinari ◽  
Gieri Cathomas ◽  
...  
2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e20506-e20506
Author(s):  
Lin Li ◽  
Naiquan Mao ◽  
Yingcheng Lyu ◽  
Huayue Lin ◽  
Kefeng Wang ◽  
...  

e20506 Background: Differentiation of multiple primary lung cancer (MPLC) from intrapulmonary metastasis (IPM) is critical to determine clinical stage. Although clinicopathological features could provide certain evidences, it’s still challenging to identify the tumor malignancy accurately. In General, standard histopathologic approach is adequate in most cases, but has notable limitations in the recognition of IPMs. Herein, we propose an integrated molecular algorithm to facilitate MPLCs and IPMs diagnosis in the clinical practice. Methods: 40 Chinese patients with lung adenocarcinomas were enrolled in the study, 84 tumor samples were collected for next-generation sequencing. Somatic alterations with variant allele fraction (VAF) ≥1% were taken into account for molecular algorithm. A genomic database of 2,471 Chinese lung adenocarcinomas (LUAD) was used to calculate odds of coincidental occurrence, prevalence of individual mutation prevalence. Tumor relatedness diagnosed by histopathologic assessment was contrasted with comparative genomic profiling by subsequent NGS. Moreover, the performance of molecular algorithm prediction was evaluated as well. Results: Firstly, we compared the performance of comprehensive next-generation sequencing (NGS) with standard histopathologic approaches for distinguishing NSCLC subtypes in clinical practice. The genomic profiling was described as following: EGFR alterations occurred more frequently in MPLCs compared to IPMs (77.1% vs 50.0%, P<0.05). Further analysis showed that TP53 alterations occurred less frequently in MPLCs compared to large Chinese cohort (22.9% vs 51.0%, P<0.05). TP53 alterations occurred less frequently in MPLCs compared to large Chinese cohort (P<0.05). The classifications based on the three different methodologies mentioned above were compared. Molecular algorithm prediction was concordant with NGS in 21 cases (52.5%), particularly in the prediction of MPLC. Retrospective review highlighted several histologic challenges, including morphologic progression in some IPMs. For the five undetermined cases, two showed differences in architectural patterns, and remained cases have nodules presented as adenocarcinoma in situ, or minimally invasive adenocarcinoma. Of 28 MPLC cases defined by NGS, 25 cases had unique somatic mutations per pair Based on calculation from the prevalence of EGFR L858R mutation (27%) in large Chinese cohort, the odds of coincidental occurrence of the mutation in two unrelated tumors was 7.3%. Taking together, EGFR alterations occurred more frequently in MPLCs compared to IPMs (77.1% vs 50.0%, P<0.05). Molecular algorithm prediction was concordant with NGS in 21 cases (52.5%). Conclusions: Our results support broad panel NGS to assist differential diagnosis to assist approach in clinical practice. It is necessary to conduct large clinical study to establish comprehensive algorithm models to assist diagnosis and predict clinical outcome.


2016 ◽  
Vol 140 (10) ◽  
pp. 1085-1091 ◽  
Author(s):  
Eric J. Duncavage ◽  
Haley J. Abel ◽  
Jason D. Merker ◽  
John B. Bodner ◽  
Qin Zhao ◽  
...  

Context.—Most current proficiency testing challenges for next-generation sequencing assays are methods-based proficiency testing surveys that use DNA from characterized reference samples to test both the wet-bench and bioinformatics/dry-bench aspects of the tests. Methods-based proficiency testing surveys are limited by the number and types of mutations that either are naturally present or can be introduced into a single DNA sample. Objective.—To address these limitations by exploring a model of in silico proficiency testing in which sequence data from a single well-characterized specimen are manipulated electronically. Design.—DNA from the College of American Pathologists reference genome was enriched using the Illumina TruSeq and Life Technologies AmpliSeq panels and sequenced on the MiSeq and Ion Torrent platforms, respectively. The resulting data were mutagenized in silico and 26 variants, including single-nucleotide variants, deletions, and dinucleotide substitutions, were added at variant allele fractions (VAFs) from 10% to 50%. Participating clinical laboratories downloaded these files and analyzed them using their clinical bioinformatics pipelines. Results.—Laboratories using the AmpliSeq/Ion Torrent and/or the TruSeq/MiSeq participated in the 2 surveys. On average, laboratories identified 24.6 of 26 variants (95%) overall and 21.4 of 22 variants (97%) with VAFs greater than 15%. No false-positive calls were reported. The most frequently missed variants were single-nucleotide variants with VAFs less than 15%. Across both challenges, reported VAF concordance was excellent, with less than 1% median absolute difference between the simulated VAF and mean reported VAF. Conclusions.—The results indicate that in silico proficiency testing is a feasible approach for methods-based proficiency testing, and demonstrate that the sensitivity and specificity of current next-generation sequencing bioinformatics across clinical laboratories are high.


2019 ◽  
Vol 143 (10) ◽  
pp. 1203-1211 ◽  
Author(s):  
Joel T. Moncur ◽  
Angela N. Bartley ◽  
Julia A. Bridge ◽  
Suzanne Kamel-Reid ◽  
Alexander J. Lazar ◽  
...  

Context.— The performance of laboratory testing has recently come under increased scrutiny as part of important and ongoing debates on regulation and reimbursement. To address this critical issue, this study compares the performance of assay methods, using either commercial kits or assays designed and implemented by single laboratories (“home brews”), including next-generation sequencing methods, on proficiency testing provided by the College of American Pathologists Molecular Oncology Committee. Objective.— To compare the performance of different assay methods on College of American Pathologists proficiency testing for variant analysis of 3 common oncology analytes: BRAF, EGFR, and KRAS. Design.— There were 6897 total responses across 35 different proficiency testing samples interrogating 13 different variants as well as wild-type sequences for BRAF, EGFR, and KRAS. Performance was analyzed by test method, kit manufacturer, variants tested, and preanalytic and postanalytic practices. Results.— Of 26 reported commercial kits, 23 achieved greater than 95% accuracy. Laboratory-developed tests with no kit specified demonstrated 96.8% or greater accuracy across all 3 analytes (1123 [96.8%] acceptable of 1160 total responses for BRAF; 848 [97.5%] acceptable of 870 total responses for EGFR; 942 [97.0%] acceptable of 971 total responses for KRAS). Next-generation sequencing platforms (summed across all analytes and 2 platforms) demonstrated 99.4% accuracy for these analytes (165 [99.4%] acceptable of 166 total next-generation sequencing responses). Slight differences in performance were noted among select commercial assays, dependent upon the particular design and specificity of the assay. Wide differences were noted in the lower limits of neoplastic cellularity laboratories accepted for testing. Conclusions.— These data demonstrate the high degree of accuracy and comparable performance across all laboratories, regardless of methodology. However, care must be taken in understanding the diagnostic specificity and reported analytic sensitivity of individual methods.


2016 ◽  
Vol 34 (4_suppl) ◽  
pp. 584-584
Author(s):  
Kristin Lynn Koenig ◽  
Jarred Burkart ◽  
Sameh Mikhail ◽  
Christina Sing-Ying Wu ◽  
Anne M. Noonan ◽  
...  

584 Background: Tumor genomic profiling has become critical in the identification of targeted therapeutic options for patients (pts) with advanced malignancies. Mutational frequencies and their therapeutic importance vary among tumor types. This analysis was undertaken to characterize the landscape of genomic alterations in gastrointestinal (GI) malignancies found in a large academic institutional practice, and to determine the frequency of alteration-specific targeted therapy selection based on genomic profiling. Methods: Adult pts with GI malignancies presenting to the Ohio State University Comprehensive Cancer Center oncology clinics were offered next generation sequencing through FoundationOne testing as part of routine clinical care. Institutional review board approval was obtained to retrospectively analyze results from FoundationOne testing performed between 2012 and 2015. Results: 265 pts with GI malignancies underwent successful genomic profiling. 1205 genomic alterations were found, with an average of 4.5 per tumor (range 0-20); 365 (30%) of these were potentially actionable and most often found in colorectal or gastroesophageal tumors. 14 pts (5.3%) had actionable alterations in MET, CDKN2A/B, FGFR2, KRAS, BRAF, or NF2 that led to enrollment in genotype-directed clinical trials or off label use of targeted therapies beyond standard of care. Pt performance status at the time of genomic alteration identification was a significant factor in precluding genotype-directed therapy. One variant of unknown significance involving FGFR2 identified at initial testing subsequently became actionable and led to pt enrollment on a clinical trial. One pt with rectal cancer was found to have a KRAS wild-type and BRAF mutant primary but KRAS mutant and BRAF wild-type liver metastasis. Conclusions: Genomic profiling of GI malignancies through next generation sequencing is feasible and can lead to genotype-directed therapy selection; however, it should be considered early in the pt’s course to optimize use of targeted therapies through clinical trials. Consideration should be given to serial tumor testing to identify emerging genomic alterations for optimal therapy selection.


Sign in / Sign up

Export Citation Format

Share Document