Mass balance of anionic surfactants through up-flow anaerobic sludge blanket based sewage treatment plants

2009 ◽  
Vol 87 (4) ◽  
pp. 254-260 ◽  
Author(s):  
Arvind Kumar Mungray ◽  
Pradeep Kumar
2011 ◽  
Vol 63 (1) ◽  
pp. 100-107 ◽  
Author(s):  
B. Heffernan ◽  
J. B. van Lier ◽  
J. van der Lubbe

This article evaluates the performance of 10 large scale upflow anaerobic sludge blanket (UASB) sewage treatment plants (STP) located in semi-tropical areas, 7 plants were located in Brazil, 2 in India and 1 in the Middle East. In addition to the UASB, essential functional units of the STP which potentially impact on the UASB are also evaluated. Most grit removal systems were performing adequately, however in one plant very little grit was being removed. This could have serious implications for the performance of the plant as in a relatively short period of time the reactors could become full of grit. The performance results obtained in this study (COD, BOD and TSS removal efficiencies) are compared to the results of recent literature publications and also to the results of some early pilot and full scale studies. The results found here are broadly similar to those result reported in the recent literature but show a lower performance in comparison with the early pilot scale plants. Factors such as improper design, poor operating procedures, insufficient maintenance and the presence of high sulphate concentrations have been identified as the main reasons for the lower performance.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3356 ◽  
Author(s):  
Fabiana Passos ◽  
Thiago Bressani-Ribeiro ◽  
Sonaly Rezende ◽  
Carlos A. L. Chernicharo

Rural sanitation is still a challenge in developing countries, such as Brazil, where the majority population live with inadequate services, compromising public health and environmental safety. In this context, this study analyzed the demographic density of these rural agglomerations using secondary data from the Brazilian Institute of Geography and Statistics (IBGE). The goal was to identify the possibilities associated with using small-scale upflow anaerobic sludge blanket (UASB) reactors for sewage treatment, mainly focusing on biogas production and its conversion into energy for cooking, water heating and sludge sanitization. Results showed that most rural agglomerations lacking the appropriate sewage treatment were predominant from 500 to 1500 inhabitants in both northern and southern Brazilian regions. The thermal energy available in the biogas would be enough to sanitize the whole amount of sludge produced in the sewage treatment plants (STPs), producing biosolids for agricultural purposes. Furthermore, the surplus of thermal energy (after sludge sanitization) could be routed for cooking (replacing LPG) and for water heating (replacing electricity) in the northern and southern regions, respectively. This would benefit more than 200,000 families throughout rural areas of the country. Besides the direct social gains derived from the practice of supplying biogas for domestic uses in the vicinity of the STPs, there would be tremendous indirect gains related to the avoidance of greenhouse gas (GHG) emissions. Therefore, an anaerobic-based sewage treatment may improve public health conditions, life quality and generate added value products in Brazilian rural areas.


2020 ◽  
Vol 81 (9) ◽  
pp. 1951-1960 ◽  
Author(s):  
C. S. Cabral ◽  
A. L. Sanson ◽  
R. J. C. F. Afonso ◽  
C. A. L. Chernicharo ◽  
J. C. Araújo

Abstract Two bioreactors were investigated as an alternative for the post-treatment of effluent from an upflow anaerobic sludge blanket (UASB) reactor treating domestic sewage, aiming at dissolved sulfide and methane removal. The bioreactors (R-control and R-air) were operated at different hydraulic retention times (HRT; 6 and 3 h) with or without aeration. Large sulfide and methane removal efficiencies were achieved by the microaerated reactor at HRT of 6 h. At this HRT, sulfide removal efficiencies were equal to 61% and 79%, and methane removal efficiencies were 31% and 55% for R-control and R-air, respectively. At an HRT of 3 h, sulfide removal efficiencies were 22% (R-control) and 33% (R-air) and methane removal did not occur. The complete oxidation of sulfide, with sulfate formation, prevailed in both phases and bioreactors. However, elemental sulfur formation was more predominant at an HRT of 6 h than at an HRT of 3 h. Taken together, the results show that post-treatment improved the anaerobic effluent quality in terms of chemical oxygen demand and solids removal. However, ammoniacal nitrogen was not removed due to either the low concentration of air provided or the absence of microorganisms involved in the nitrogen cycle.


2019 ◽  
Vol 80 (3) ◽  
pp. 418-425 ◽  
Author(s):  
T. Bressani-Ribeiro ◽  
L. A. Chamhum-Silva ◽  
C. A. L. Chernicharo

Abstract There are hundreds of full-scale upflow anaerobic sludge blanket (UASB) reactors in operation in various parts of the tropical world, notably in India and Latin America, Brazil being the holder of the largest park of anaerobic reactors for sewage treatment in the world. Despite the recognized advantages of UASB reactors, there are problems that have prevented their maximum operational performance. Neglecting the existence and delaying the solution of these challenges can jeopardize the important advances made to date, impacting the future of anaerobic technology in Brazil and in other countries. This work aims to evaluate the operational performance of five full-scale UASB reactors in Brazil, taking into account a monitoring period ranging between two and six years. The main observed design, construction, and operational constraints are discussed. Some outlooks for important upcoming developments are also provided, considering that most of the observed drawbacks can be tackled without significant increases on reactor costs.


2021 ◽  
Vol 7 (1) ◽  
pp. 156-171
Author(s):  
Evangelos Petropoulos ◽  
Burhan Shamurad ◽  
Shamas Tabraiz ◽  
Yongjie Yu ◽  
Russell Davenport ◽  
...  

In this study, we investigated the feasibility of anaerobic sewage treatment at extremely low temperatures (4 °C) using two reactor setups: Upflow anaerobic sludge blanket reactors (UASB) without and with (AnMBRUASB(UF)) a membrane.


2006 ◽  
Vol 54 (5) ◽  
pp. 119-129 ◽  
Author(s):  
F. Kato ◽  
H. Kitakoji ◽  
K. Oshita ◽  
M. Takaoka ◽  
N. Takeda ◽  
...  

The recovery of phosphorus from sewage and sludge treatment systems is particularly important because it is a limited resource and a large proportion of the phosphorus currently used in Japan must be imported. We have been experimentally evaluating recovery methods with sulphide. In this study, we focussed on the extraction of phosphate from the sludge, and sought to achieve a greater extraction efficiency and to validate the extraction mechanism. We conducted three experiments, i.e. a sludge-type experiment, a coagulant ratio of pre-coagulated sludge experiment, and a concentration of pre-coagulated sludge experiment. Phosphate was extracted not with normal sewage sludge but with pre-coagulated sludge and FePO4 reagent at S/Fe=1.0–2.0. A coagulant ratio of 23 mg Fe L−1 was required in the pre-coagulation process to effectively extract phosphate. A high concentration of pre-coagulated sludge was required for the phosphate extraction. The mass balance was calculated, and 44.0% of phosphorus was extracted to supernatant, and 98.5% of iron and 98.3% of sulphur (44.1% of sulphur was sulphide). Thus, phosphate can be selectively separated from iron by the phosphate extraction method with NaHS, and phosphorus and iron can be recovered and reused at sewage treatment plants using ferric chloride as a coagulant.


2011 ◽  
Vol 63 (6) ◽  
pp. 1255-1264 ◽  
Author(s):  
K. Patel ◽  
A. K. Mungray

Performance of the combined process of up-flow anaerobic sludge blanket (UASB) reactor and cascade sponge reactor (CSR) for sewage treatment was studied. UASB-CSR system was operated at HRTs of 24 h, 16 h, and 8 h at an average wastewater temperature of 29°C. It comprises of the most efficient combined process not only for CODT (98.9%), BODT (98.5%), TSS (99.3%), total nitrogen (89.1%), total phosphorus (99.0%), total coliform (99.9%) and fecal coliform (99.9%) removal but also for reducing excess sludge production. Fecal coliform counts were found 23 MPN/100 ml only in final effluents. The effluent quality of the system sufficiently meets the discharged standards which regulate wastewater discharge into drains. The parameters of CSR are closely related to those of the potable water after certain advanced treatment which can be reused in many ways. Moreover, it does not require any external aeration and thus the cost associated with energy and devices required for aeration are cut to zero.


1998 ◽  
Vol 38 (8-9) ◽  
pp. 189-195 ◽  
Author(s):  
Ricardo Franci Gonçalves ◽  
Vera Lúcia de Araújo ◽  
Carlos Augusto L. Chernicharo

This paper presents exploratory results on the association of an Upflow Anaerobic Sludge Blanket - UASB reactor (46 L) and a submerged aerated biofilter – BF (6.3 L) for domestic sewage treatment. The experimental period extended for 322 days, during which the hydraulic and organic loads were gradually increased in both reactors. Having the UASB as a reference, the following hydraulic loads were tested: 0.4 m3/m2.h (θ = 16 h); 0.6m3/m2.h (θ = 10h); 0.8 m3/m2.h (θ = 8 h); 1.0 m3/m2.h (θ = 6 h) and 1.45 m3/m2.h (θ = 4h). During the experiments carried out with the UASB reactor operating at a hydraulic detention time of 6 hours, related to a θ < 11′ in the granular media of the BF, the mean removal efficiency in terms of SS, BOD5 and COD, in both reactors, were respectively 94%, 96% and 91%. The final effluent, related to the BF effluent, presented the following mean characteristics: SS = 10 mg/L, BOD5 = 9 mg/L and COD = 38 mg/L. The results obtained in the last phase of the experiments, when the hydraulic load in the UASB reactor reached 1.45 m3/m2.h (θ = 4h), were similar to those obtained in the previous phase. These results demonstrate that submerged aerated biofilters can be considered a viable alternative for the post-treatment of effluents from UASB reactors treating domestic sewage. These reactors are capable of being operated with very short hydraulic detention times.


Sign in / Sign up

Export Citation Format

Share Document