A novel high-performance facilitated transport membrane by simultaneously using semi-mobile and fixed carriers for CO2/N2 separation

Author(s):  
Mahdi Elyasi Kojabad ◽  
AliAkbar Babaluo ◽  
Akram Tavakoli ◽  
Haniyeh Golizadeh Kahnamouei
Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 118 ◽  
Author(s):  
Chunwei Zhang ◽  
Menglong Sheng ◽  
Yaoqiang Hu ◽  
Ye Yuan ◽  
Yulong Kang ◽  
...  

CO2 enhanced oil recovery (CO2-EOR) technology is a competitive strategy to improve oil field economic returns and reduce greenhouse gas emissions. However, the arbitrary emissions or combustion of the associated gas, which mainly consists of CO2 and CH4, will cause the aggravation of the greenhouse effect and a huge waste of resources. In this paper, the high-performance facilitated transport multilayer composite membrane for CO2/CH4 separation was prepared by individually adjusting the membrane structure of each layer. The effect of test conditions on the CO2/CH4 separation performance was systematically investigated. The membrane exhibits high CO2 permeance of 3.451 × 10−7 mol·m−2·s−1·Pa−1 and CO2/CH4 selectivity of 62 at 298 K and 0.15 MPa feed gas pressure. The cost analysis was investigated by simulating the two-stage system. When the recovery rate and purity of CH4 are 98%, the minimum specific cost of separating CO2/CH4 (45/55 vol%) can be reduced to 0.046 $·Nm−3 CH4. The excellent short-to-mid-term stability indicates the great potential of large industrial application in the CH4 recovery and CO2 reinjection from oilfield associated gas.


2015 ◽  
Vol 3 (32) ◽  
pp. 16746-16761 ◽  
Author(s):  
Jiayou Liao ◽  
Zhi Wang ◽  
Chengyun Gao ◽  
Ming Wang ◽  
Kai Yan ◽  
...  

A PVAm–HT membrane containing high-speed facilitated transport channels combines the advantages of traditional facilitated transport membranes to a certain extent and obtains high permeance as well as high selectivity.


2014 ◽  
Vol 5 (7) ◽  
pp. 2843-2849 ◽  
Author(s):  
Jiayou Liao ◽  
Zhi Wang ◽  
Chengyun Gao ◽  
Shichun Li ◽  
Zhihua Qiao ◽  
...  

At present, liquid membranes, ion-exchange membranes and fixed carrier membranes are the three popular facilitated transport membranes for CO2 separation. We report a method to combine their advantages and overcome their deficiencies.


Author(s):  
A. V. Crewe ◽  
M. Isaacson ◽  
D. Johnson

A double focusing magnetic spectrometer has been constructed for use with a field emission electron gun scanning microscope in order to study the electron energy loss mechanism in thin specimens. It is of the uniform field sector type with curved pole pieces. The shape of the pole pieces is determined by requiring that all particles be focused to a point at the image slit (point 1). The resultant shape gives perfect focusing in the median plane (Fig. 1) and first order focusing in the vertical plane (Fig. 2).


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
John W. Coleman

In the design engineering of high performance electromagnetic lenses, the direct conversion of electron optical design data into drawings for reliable hardware is oftentimes difficult, especially in terms of how to mount parts to each other, how to tolerance dimensions, and how to specify finishes. An answer to this is in the use of magnetostatic analytics, corresponding to boundary conditions for the optical design. With such models, the magnetostatic force on a test pole along the axis may be examined, and in this way one may obtain priority listings for holding dimensions, relieving stresses, etc..The development of magnetostatic models most easily proceeds from the derivation of scalar potentials of separate geometric elements. These potentials can then be conbined at will because of the superposition characteristic of conservative force fields.


Author(s):  
J W Steeds ◽  
R Vincent

We review the analytical powers which will become more widely available as medium voltage (200-300kV) TEMs with facilities for CBED on a nanometre scale come onto the market. Of course, high performance cold field emission STEMs have now been in operation for about twenty years, but it is only in relatively few laboratories that special modification has permitted the performance of CBED experiments. Most notable amongst these pioneering projects is the work in Arizona by Cowley and Spence and, more recently, that in Cambridge by Rodenburg and McMullan.There are a large number of potential advantages of a high intensity, small diameter, focussed probe. We discuss first the advantages for probes larger than the projected unit cell of the crystal under investigation. In this situation we are able to perform CBED on local regions of good crystallinity. Zone axis patterns often contain information which is very sensitive to thickness changes as small as 5nm. In conventional CBED, with a lOnm source, it is very likely that the information will be degraded by thickness averaging within the illuminated area.


Sign in / Sign up

Export Citation Format

Share Document