scholarly journals Role of the injected water salinity and ion concentrations on the oil recovery in carbonate reservoirs

Author(s):  
M. Fouad Snosy ◽  
Mahmoud Abu El Ela ◽  
Ahmed El-Banbi ◽  
Helmy Sayyouh
2021 ◽  
Author(s):  
Navpreet Singh ◽  
Hemanta Kumar Sarma

Abstract Low salinity waterflooding has been an area of great interest for researchers for almost over three decades for its perceived "simplicity," cost-effectiveness, and the potential benefits it offers over the other enhanced oil recovery (EOR) techniques. There have been numerous laboratory studies to study the effect of injection water salinity on oil recovery, but there are only a few cases reported worldwide where low salinity water flooding (LSW) has been implemented on a field scale. In this paper, we have summarized the results of our analyses for some of those successful field cases for both sandstone and carbonate reservoirs. Most field cases of LSW worldwide are in sandstone reservoirs. Although there have been a lot of experimental studies on the effect of water salinity on recovery in carbonate reservoirs, only a few cases of field-scale implementation have been reported for the LSW in carbonate reservoirs. The incremental improvement expected from the LSW depends on various factors like the brine composition (injection and formation water), oil composition, pressure, temperature, and rock mineralogy. Therefore, all these factors should be considered, together with some specially designed fit-for-purpose experimental studies need to be performed before implementing the LSW on a field scale. The evidence of the positive effect of LSW at the field scale has mostly been observed from near well-bore well tests and inter-well tests. However, there are a few cases such Powder River Basin in the USA and Bastrykskoye field in Russia, where the operators had unintentionally injected less saline water in the past and were pleasantly surprised when the analyses of the historical data seemed to attribute the enhanced oil recovery due to the lower salinity of the injected water. We have critically analyzed all the major field cases of LSW. Our paper highlights some of the key factors that worked well in the field, which showed a positive impact of LSW and a comparative assessment of the incremental recovery realized from the reservoir visa-a-vis the expectations generated from the laboratory-based experimental studies. It is envisaged that such a comparison could be more meaningful and reliable. Also, it identifies the likely uncertainties (and their sources) associated during the field implementation of LSW.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 94
Author(s):  
Asep Kurnia Permadi ◽  
Egi Adrian Pratama ◽  
Andri Luthfi Lukman Hakim ◽  
Doddy Abdassah

A factor influencing the effectiveness of CO2 injection is miscibility. Besides the miscible injection, CO2 may also contribute to oil recovery improvement by immiscible injection through modifying several properties such as oil swelling, viscosity reduction, and the lowering of interfacial tension (IFT). Moreover, CO2 immiscible injection performance is also expected to be improved by adding some solvent. However, there are a lack of studies identifying the roles of solvent in assisting CO2 injection through observing those properties simultaneously. This paper explains the effects of CO2–carbonyl and CO2–hydroxyl compounds mixture injection on those properties, and also the minimum miscibility pressure (MMP) experimentally by using VIPS (refers to viscosity, interfacial tension, pressure–volume, and swelling) apparatus, which has a capability of measuring those properties simultaneously within a closed system. Higher swelling factor, lower viscosity, IFT and MMP are observed from a CO2–propanone/acetone mixture injection. The role of propanone and ethanol is more significant in Sample A1, which has higher molecular weight (MW) of C7+ and lower composition of C1–C4, than that in the other Sample A9. The solvents accelerate the ways in which CO2 dissolves and extracts oil, especially the extraction of the heavier component left in the swelling cell.


Soft Matter ◽  
2021 ◽  
Author(s):  
Massinissa Hamouna ◽  
Aline Delbos ◽  
Christine Dalmazonne ◽  
Annie Colin

In the context of enhanced oil recovery or soil remediation, we study the role of interactions between polymers and surfactants on the injectivity of formulations containing mixtures of polymers and...


2021 ◽  
Author(s):  
Yongsheng Tan ◽  
Qi Li ◽  
Liang Xu ◽  
Xiaoyan Zhang ◽  
Tao Yu

<p>The wettability, fingering effect and strong heterogeneity of carbonate reservoirs lead to low oil recovery. However, carbon dioxide (CO<sub>2</sub>) displacement is an effective method to improve oil recovery for carbonate reservoirs. Saturated CO<sub>2</sub> nanofluids combines the advantages of CO<sub>2</sub> and nanofluids, which can change the reservoir wettability and improve the sweep area to achieve the purpose of enhanced oil recovery (EOR), so it is a promising technique in petroleum industry. In this study, comparative experiments of CO<sub>2</sub> flooding and saturated CO<sub>2</sub> nanofluids flooding were carried out in carbonate reservoir cores. The nuclear magnetic resonance (NMR) instrument was used to clarify oil distribution during core flooding processes. For the CO<sub>2</sub> displacement experiment, the results show that viscous fingering and channeling are obvious during CO<sub>2</sub> flooding, the oil is mainly produced from the big pores, and the residual oil is trapped in the small pores. For the saturated CO<sub>2</sub> nanofluids displacement experiment, the results show that saturated CO<sub>2</sub> nanofluids inhibit CO<sub>2</sub> channeling and fingering, the oil is produced from the big pores and small pores, the residual oil is still trapped in the small pores, but the NMR signal intensity of the residual oil is significantly reduced. The final oil recovery of saturated CO<sub>2</sub> nanofluids displacement is higher than that of CO<sub>2</sub> displacement. This study provides a significant reference for EOR in carbonate reservoirs. Meanwhile, it promotes the application of nanofluids in energy exploitation and CO<sub>2</sub> utilization.</p>


Sign in / Sign up

Export Citation Format

Share Document