Impact of hydrological conditions on the radiocarbon reservoir effect in lake sediment 14C dating: the case of Kusai Lake on the northern Qinghai-Tibet Plateau

2021 ◽  
Vol 62 ◽  
pp. 101149
Author(s):  
Qi Zhang ◽  
Xingqi Liu ◽  
Huashu Li
2018 ◽  
Vol 15 (21) ◽  
pp. 6637-6648 ◽  
Author(s):  
Yinghui Wang ◽  
Robert G. M. Spencer ◽  
David C. Podgorski ◽  
Anne M. Kellerman ◽  
Harunur Rashid ◽  
...  

Abstract. The Qinghai–Tibet Plateau (QTP) accounts for approximately 70 % of global alpine permafrost and is an area sensitive to climate change. The thawing and mobilization of ice-rich and organic-carbon-rich permafrost impact hydrologic conditions and biogeochemical processes on the QTP. Despite numerous studies of Arctic permafrost, there are no reports to date for the molecular-level in-stream processing of permafrost-derived dissolved organic matter (DOM) on the QTP. In this study, we examine temporal and spatial changes of DOM along an alpine stream (3850–3207 m above sea level) by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), accelerator mass spectrometry (AMS) and UV–visible spectroscopy. Compared to downstream sites, dissolved organic matter (DOM) at the headstream site exhibited older radiocarbon age, higher mean molecular weight, higher aromaticity and fewer highly unsaturated compounds. At the molecular level, 6409 and 1345 formulas were identified as unique to the active layer (AL) leachate and permafrost layer (PL) leachate, respectively. Comparing permafrost leachates to the downstream site, 59 % of AL-specific formulas and 90 % of PL-specific formulas were degraded, likely a result of rapid in-stream degradation of permafrost-derived DOM. From peak discharge in the summer to low flow in late autumn, the DOC concentration at the headstream site decreased from 13.9 to 10.2 mg L−1, while the 14C age increased from 745 to 1560 years before present (BP), reflecting an increase in the relative contribution of deep permafrost carbon due to the effect of changing hydrological conditions over the course of the summer on the DOM source (AL vs. PL). Our study thus demonstrates that hydrological conditions impact the mobilization of permafrost carbon in an alpine fluvial network, the signature of which is quickly lost through in-stream mineralization and transformation.


2021 ◽  
Vol 166 ◽  
pp. 104093
Author(s):  
Fei Peng ◽  
Wenjuan Zhang ◽  
Chimin Lai ◽  
Chengyang Li ◽  
Quangang You ◽  
...  

Author(s):  
Deyan Ge ◽  
Anderson Feijó ◽  
Zhixin Wen ◽  
Alexei V Abramov ◽  
Liang Lu ◽  
...  

Abstract For organisms to survive and prosper in a harsh environment, particularly under rapid climate change, poses tremendous challenges. Recent studies have highlighted the continued loss of megafauna in terrestrial ecosystems and the subsequent surge of small mammals, such as rodents, bats, lagomorphs, and insectivores. However, the ecological partitioning of these animals will likely lead to large variation in their responses to environmental change. In the present study, we investigated the evolutionary history and genetic adaptations of white-bellied rats (Niviventer Marshall, 1976), which are widespread in the natural terrestrial ecosystems in Asia but also known as important zoonotic pathogen vectors and transmitters. The southeastern Qinghai-Tibet Plateau (QHTP) was inferred as the origin center of this genus, with parallel diversification in temperate and tropical niches. Demographic history analyses from mitochondrial and nuclear sequences of Niviventer demonstrated population size increases and range expansion for species in Southeast Asia, and habitat generalists elsewhere. Unexpectedly, population increases were seen in N. eha, which inhabits the highest elevation among Niviventer species. Genome scans of nuclear exons revealed that among the congeneric species, N. eha has the largest number of positively selected genes. Protein functions of these genes are mainly related to olfaction, taste and tumor suppression. Extensive genetic modification presents a major strategy in response to global changes in these alpine species.


Author(s):  
Fang‐Fang Li ◽  
Kang Zhao ◽  
Hou‐Liang Lu ◽  
Guang‐Qian Wang ◽  
Jun Qiu

2020 ◽  
Vol 13 (1) ◽  
pp. 196
Author(s):  
Mengmeng Meng ◽  
Weiguo Fan ◽  
Jianchang Lu ◽  
Xiaobin Dong ◽  
Hejie Wei

Qinghai-Tibet Plateau is a typical resource-rich but economically backward region in western China, and it is of great urgency to improve human well-being. Combined with previous scholars’ research and the characteristics of Qinghai-Tibet Plateau, this paper constructs an index system of human well-being including four dimensions: income and consumption, means of production, means of subsistence, and resource acquisition ability. Then, it uses generalized matrix method estimations to measure the influence of energy utilization and economic development on human well-being and makes a regression analysis on the influence of energy utilization and economic development on human well-being in various provinces in this region. It is found that per capita GDP and coke utilization promote the well-being of all dimensions, while the urban registered unemployment rate only promotes the well-being of means of subsistence. The utilization of gasoline and natural gas promotes income and consumption and inhibits the means of subsistence and resource acquisition ability, but they have opposite effects on means of production. The impacts of energy utilization and economic development in different provinces on human well-being are different. This study is of great significance to the related research aiming at improving people’s livelihood and promoting regional development.


Sign in / Sign up

Export Citation Format

Share Document