Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits: a review

2010 ◽  
Vol 29 (23-24) ◽  
pp. 3157-3166 ◽  
Author(s):  
Gábor Újvári ◽  
János Kovács ◽  
György Varga ◽  
Béla Raucsik ◽  
Slobodan B. Marković
2018 ◽  
Vol 89 (3) ◽  
pp. 797-819 ◽  
Author(s):  
Daniel R. Muhs ◽  
Jeffrey S. Pigati ◽  
James R. Budahn ◽  
Gary L. Skipp ◽  
E. Arthur Bettis ◽  
...  

AbstractLoess is widespread over Alaska, and its accumulation has traditionally been associated with glacial periods. Surprisingly, loess deposits securely dated to the last glacial period are rare in Alaska, and paleowind reconstructions for this time period are limited to inferences from dune orientations. We report a rare occurrence of loess deposits dating to the last glacial period, ~19 ka to ~12 ka, in the Yukon-Tanana Upland. Loess in this area is very coarse grained (abundant coarse silt), with decreases in particle size moving south of the Yukon River, implying that the drainage basin of this river was the main source. Geochemical data show, however, that the Tanana River valley to the south is also a likely distal source. The occurrence of last-glacial loess with sources to both the south and north is explained by both regional, synoptic-scale winds from the northeast and opposing katabatic winds that could have developed from expanded glaciers in both the Brooks Range to the north and the Alaska Range to the south. Based on a comparison with recent climate modeling for the last glacial period, seasonality of dust transport may also have played a role in bringing about contributions from both northern and southern sources.


2021 ◽  
Author(s):  
Gabor Ujvari ◽  
Stefano M Bernasconi ◽  
Thomas Stevens ◽  
Sandor Kele ◽  
Barna Pall-Gergely ◽  
...  

<p>The generally cold climate of the last glacial period was interrupted by numerous abrupt shifts to warmer interstadial conditions in the North Atlantic. The effects of this Dansgaard–Oeschger (D–O) type climatic variability have been found in a number of European and Asian terrestrial paleoclimate archives, including speleothems, lakes and loess deposits. However, only very few of the already sparse precisely dated records provide quantitative information on stadial-interstadial temperature variations over this time period. This is a major impediment to resolving the cause and geographical propagation of D-O events, as well as to understanding the impact they have on continental climates and environments.</p><p>Here we present carbonate clumped isotope (<em>Δ<sub>47</sub></em>)-based active season paleotemperature (AST) estimates from land snails recovered from Greenland Stadial/Interstadial (GS/GI) 5 and 3 age loess at the Dunaszekcső loess site (Hungary), based on a uniquely detailed AMS <sup>14</sup>C age dataset, alongside a new flowstone (PK-6, Bükkösd, Hungary) stable isotope-based temperature change record <sup>230</sup>Th-dated to 30-26 ka. Stadial ASTs of the investigated periods were found to be in the range of 7–13 °C, corresponding to <em>T<sub>annual</sub></em> of 0–6 °C and <em>T<sub>July</sub></em> of 11–17 °C, agreeing well with the range of model simulation results for the region. Interstadial AST values reconstructed for GI-5.1 and 3 (16–18 °C) indicate warm summers (<em>T<sub>July</sub></em>: 20–22 °C) and relatively high annual mean temperatures (<em>T<sub>annual</sub></em>: 9–11 °C), matching present-day values. The PK-6 flowstone δ<sup>18</sup>O<sub>calcite</sub>-based temperature change estimates (~0.2 ‰ °C<sup>–1 </sup>δ<sup>18</sup>O/T gradient) reveal a 7–10 °C <em>T<sub>annual</sub></em> rise for the warmest phases of GI-3 and 4 compared to stadial temperatures, in very good agreement with the land snail <em>TΔ<sub>47</sub></em> values.</p><p>Our results show that stadial-interstadial climate variability in East Central Europe was of comparable magnitude to that in Greenland. We propose that large scale ocean-atmospheric variability (NAO-AMO) imparts a major control on transmitting abrupt North Atlantic climate event signals into continental Europe during the last glacial.</p><p> </p><p>This study was funded by the Hungarian National Research, Development and Innovation Office to GÚ (OTKA PD-108639) and SK (OTKA KH-125584). TS is grateful for the support of the Swedish Research Council (2017-03888).</p>


2020 ◽  
Vol 532 ◽  
pp. 116012 ◽  
Author(s):  
Jessica B. Volz ◽  
Bo Liu ◽  
Male Köster ◽  
Susann Henkel ◽  
Andrea Koschinsky ◽  
...  

2017 ◽  
Vol 13 (4) ◽  
pp. 345-358 ◽  
Author(s):  
Marília C. Campos ◽  
Cristiano M. Chiessi ◽  
Ines Voigt ◽  
Alberto R. Piola ◽  
Henning Kuhnert ◽  
...  

Abstract. Abrupt millennial-scale climate change events of the last deglaciation (i.e. Heinrich Stadial 1 and the Younger Dryas) were accompanied by marked increases in atmospheric CO2 (CO2atm) and decreases in its stable carbon isotopic ratios (δ13C), i.e. δ13CO2atm, presumably due to outgassing from the ocean. However, information on the preceding Heinrich Stadials during the last glacial period is scarce. Here we present δ13C records from two species of planktonic foraminifera from the western South Atlantic that reveal major decreases (up to 1 ‰) during Heinrich Stadials 3 and 2. These δ13C decreases are most likely related to millennial-scale periods of weakening of the Atlantic meridional overturning circulation and the consequent increase (decrease) in CO2atm (δ13CO2atm). We hypothesise two mechanisms that could account for the decreases observed in our records, namely strengthening of Southern Ocean deep-water ventilation and weakening of the biological pump. Additionally, we suggest that air–sea gas exchange could have contributed to the observed δ13C decreases. Together with other lines of evidence, our data are consistent with the hypothesis that the CO2 added to the atmosphere during abrupt millennial-scale climate change events of the last glacial period also originated in the ocean and reached the atmosphere by outgassing. The temporal evolution of δ13C during Heinrich Stadials 3 and 2 in our records is characterized by two relative minima separated by a relative maximum. This w structure is also found in North Atlantic and South American records, further suggesting that such a structure is a pervasive feature of Heinrich Stadial 2 and, possibly, also Heinrich Stadial 3.


2013 ◽  
Vol 160 (5) ◽  
pp. 1285-1296 ◽  
Author(s):  
D. W. Foltz ◽  
S. D. Fatland ◽  
M. Eléaume ◽  
K. Markello ◽  
K. L. Howell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document