Twentieth century sea-level rise inferred from tide gauge, geologically derived and thermosteric sea-level changes

2013 ◽  
Vol 75 ◽  
pp. 114-131 ◽  
Author(s):  
Masao Nakada ◽  
Jun'ichi Okuno ◽  
Masayoshi Ishii
2020 ◽  
Vol 9 (3) ◽  
pp. 185 ◽  
Author(s):  
Nevin Avşar ◽  
Şenol Kutoğlu

Global mean sea level has been rising at an increasing rate, especially since the early 19th century in response to ocean thermal expansion and ice sheet melting. The possible consequences of sea level rise pose a significant threat to coastal cities, inhabitants, infrastructure, wetlands, ecosystems, and beaches. Sea level changes are not geographically uniform. This study focuses on present-day sea level changes in the Black Sea using satellite altimetry and tide gauge data. The multi-mission gridded satellite altimetry data from January 1993 to May 2017 indicated a mean rate of sea level rise of 2.5 ± 0.5 mm/year over the entire Black Sea. However, when considering the dominant cycles of the Black Sea level time series, an apparent (significant) variation was seen until 2014, and the rise in the mean sea level has been estimated at about 3.2 ± 0.6 mm/year. Coastal sea level, which was assessed using the available data from 12 tide gauge stations, has generally risen (except for the Bourgas Station). For instance, from the western coast to the southern coast of the Black Sea, in Constantza, Sevastopol, Tuapse, Batumi, Trabzon, Amasra, Sile, and Igneada, the relative rise was 3.02, 1.56, 2.92, 3.52, 2.33, 3.43, 5.03, and 6.94 mm/year, respectively, for varying periods over 1922–2014. The highest and lowest rises in the mean level of the Black Sea were in Poti (7.01 mm/year) and in Varna (1.53 mm/year), respectively. Measurements from six Global Navigation Satellite System (GNSS) stations, which are very close to the tide gauges, also suggest that there were significant vertical land movements at some tide gauge locations. This study confirmed that according to the obtained average annual phase value of sea level observations, seasonal sea level variations in the Black Sea reach their maximum annual amplitude in May–June.


2021 ◽  
Vol 21 (8) ◽  
pp. 2643-2678 ◽  
Author(s):  
Davide Zanchettin ◽  
Sara Bruni ◽  
Fabio Raicich ◽  
Piero Lionello ◽  
Fanny Adloff ◽  
...  

Abstract. The city of Venice and the surrounding lagoonal ecosystem are highly vulnerable to variations in relative sea level. In the past ∼150 years, this was characterized by an average rate of relative sea-level rise of about 2.5 mm/year resulting from the combined contributions of vertical land movement and sea-level rise. This literature review reassesses and synthesizes the progress achieved in quantification, understanding and prediction of the individual contributions to local relative sea level, with a focus on the most recent studies. Subsidence contributed to about half of the historical relative sea-level rise in Venice. The current best estimate of the average rate of sea-level rise during the observational period from 1872 to 2019 based on tide-gauge data after removal of subsidence effects is 1.23 ± 0.13 mm/year. A higher – but more uncertain – rate of sea-level rise is observed for more recent years. Between 1993 and 2019, an average change of about +2.76 ± 1.75 mm/year is estimated from tide-gauge data after removal of subsidence. Unfortunately, satellite altimetry does not provide reliable sea-level data within the Venice Lagoon. Local sea-level changes in Venice closely depend on sea-level variations in the Adriatic Sea, which in turn are linked to sea-level variations in the Mediterranean Sea. Water mass exchange through the Strait of Gibraltar and its drivers currently constitute a source of substantial uncertainty for estimating future deviations of the Mediterranean mean sea-level trend from the global-mean value. Regional atmospheric and oceanic processes will likely contribute significant interannual and interdecadal future variability in Venetian sea level with a magnitude comparable to that observed in the past. On the basis of regional projections of sea-level rise and an understanding of the local and regional processes affecting relative sea-level trends in Venice, the likely range of atmospherically corrected relative sea-level rise in Venice by 2100 ranges between 32 and 62 cm for the RCP2.6 scenario and between 58 and 110 cm for the RCP8.5 scenario, respectively. A plausible but unlikely high-end scenario linked to strong ice-sheet melting yields about 180 cm of relative sea-level rise in Venice by 2100. Projections of human-induced vertical land motions are currently not available, but historical evidence demonstrates that they have the potential to produce a significant contribution to the relative sea-level rise in Venice, exacerbating the hazard posed by climatically induced sea-level changes.


Author(s):  
D. Zhou ◽  
W. Sun ◽  
Y. Fu ◽  
X. Zhou

<p><strong>Abstract.</strong> The ground vertical movement of the tide gauges around the Bohai sea was firstly analyzed by using the observation data from 2009 to 2017 of the nine co-located GNSS stations. It was found that the change rate of ground vertical motion of four stations was in the same order of magnitude as the sea level change. In particular, the land subsidence rate of BTGU station reaches 11.47&amp;thinsp;mm/yr, which should be paid special attention to in the analysis of sea level change. Then combined with long-term tide gauges and the satellite altimetry results, the sea level changes in the Bohai sea and adjacent waters from 1993 to 2012 were analyzed. The relative and absolute sea level rise rates of the sea area are 3.81&amp;thinsp;mm/yr and 3.61&amp;thinsp;mm/yr, respectively, both are higher than the global average rate of change. At the same time, it is found that the vertical land motion of tide gauge stations is the main factor causing regional differences in relative sea level changes.</p>


Author(s):  
Laury Miller ◽  
Bruce C Douglas

Both the rate and causes of twentieth century global sea-level rise (GSLR) have been controversial. Estimates from tide-gauges range from less than one, to more than two millimetre yr −1 . In contrast, values based on the processes mostly responsible for GSLR—mass increase (from mountain glaciers and the great high latitude ice masses) and volume increase (expansion due to ocean warming)—fall below this range. Either the gauge estimates are too high, or one (or both) of the component estimates is too low. Gauge estimates of GSLR have been in dispute for several decades because of vertical land movements, especially due to glacial isostatic adjustment (GIA). More recently, the possibility has been raised that coastal tide-gauges measure exaggerated rates of sea-level rise because of localized ocean warming. Presented here are two approaches to a resolution of these problems. The first is morphological, based on the limiting values of observed trends of twentieth century relative sea-level rise as a function of distance from the centres of the ice loads at last glacial maximum. This observational approach, which does not depend on a geophysical model of GIA, supports values of GSLR near 2 mm yr −1 . The second approach involves an analysis of long records of tide-gauge and hydrographic ( in situ temperature and salinity) observations in the Pacific and Atlantic Oceans. It was found that sea-level trends from tide-gauges, which reflect both mass and volume change, are 2–3 times higher than rates based on hydrographic data which reveal only volume change. These results support those studies that put the twentieth century rate near 2 mm yr −1 , thereby indicating that mass increase plays a much larger role than ocean warming in twentieth century GSLR.


2017 ◽  
Vol 30 (21) ◽  
pp. 8565-8593 ◽  
Author(s):  
B. Meyssignac ◽  
A. B. A Slangen ◽  
A. Melet ◽  
J. A. Church ◽  
X. Fettweis ◽  
...  

Twentieth-century regional sea level changes are estimated from 12 climate models from phase 5 of the Climate Model Intercomparison Project (CMIP5). The output of the CMIP5 climate model simulations was used to calculate the global and regional sea level changes associated with dynamic sea level, atmospheric loading, glacier mass changes, and ice sheet surface mass balance contributions. The contribution from groundwater depletion, reservoir storage, and dynamic ice sheet mass changes are estimated from observations as they are not simulated by climate models. All contributions are summed, including the glacial isostatic adjustment (GIA) contribution, and compared to observational estimates from 27 tide gauge records over the twentieth century (1900–2015). A general agreement is found between the simulated sea level and tide gauge records in terms of interannual to multidecadal variability over 1900–2015. But climate models tend to systematically underestimate the observed sea level trends, particularly in the first half of the twentieth century. The corrections based on attributable biases between observations and models that have been identified in Part I of this two-part paper result in an improved explanation of the spatial variability in observed sea level trends by climate models. Climate models show that the spatial variability in sea level trends observed by tide gauge records is dominated by the GIA contribution and the steric contribution over 1900–2015. Climate models also show that it is important to include all contributions to sea level changes as they cause significant local deviations; note, for example, the groundwater depletion around India, which is responsible for the low twentieth-century sea level rise in the region.


2021 ◽  
Vol 13 (17) ◽  
pp. 3431
Author(s):  
Qing Zhao ◽  
Jiayi Pan ◽  
Adam Devlin ◽  
Qing Xu ◽  
Maochuan Tang ◽  
...  

Non-climate-related anthropogenic processes and frequently encountered natural hazards exacerbate the risk in coastal zones and megacities and amplify local vulnerability. Coastal risk is amplified by the combination of sea level rise (SLR) resulting from climate change, associated tidal evolution, and the local sinking of land resulting from anthropogenic and natural hazards. In this framework, the authors of this investigation have actively contributed to the joint European Space Agency (ESA) and the Chinese Ministry of Science and Technology (MOST) Dragon IV initiative through a project (ID. 32294) that was explicitly designed to address the issue of monitoring coastal and delta river regions through Earth Observation (EO) technologies. The project’s primary goals were to provide a complete characterization of the changes in target scenes over time and provide estimates of future regional sea level changes to derive submerged coastal areas and wave fields. Suggestions are also provided for implementing coastal protection measures in order to adapt and mitigate the multifactor coastal vulnerability. In order to achieve these tasks, well-established remote sensing technologies based on the joint exploitation of multi-spectral information gathered at different spectral wavelengths, the exploitation of advanced Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques for the retrieval of ground deformations, the realization of geophysical analyses, and the use of satellite altimeters and tide gauge data have effectively been employed. The achieved results, which mainly focus on selected sensitive regions including the city of Shanghai, the Pearl River Delta in China, and the coastal city of Saint Petersburg in Europe, provide essential assets for planning present and future scientific activities devoted to monitoring such fragile environments. These analyses are crucial for assessing the factors that will amplify the vulnerability of low-elevation coastal zones.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
T. C. Harvey ◽  
B. D. Hamlington ◽  
T. Frederikse ◽  
R. S. Nerem ◽  
C. G. Piecuch ◽  
...  

AbstractRegional sea-level changes are caused by several physical processes that vary both in space and time. As a result of these processes, large regional departures from the long-term rate of global mean sea-level rise can occur. Identifying and understanding these processes at particular locations is the first step toward generating reliable projections and assisting in improved decision making. Here we quantify to what degree contemporary ocean mass change, sterodynamic effects, and vertical land motion influence sea-level rise observed by tide-gauge locations around the contiguous U.S. from 1993 to 2018. We are able to explain tide gauge-observed relative sea-level trends at 47 of 55 sampled locations. Locations where we cannot explain observed trends are potentially indicative of shortcomings in our coastal sea-level observational network or estimates of uncertainty.


2021 ◽  
Author(s):  
Francisco Mir Calafat ◽  
Thomas Frederikse ◽  
Kevin Horsburgh ◽  
Nadim Dayoub

&lt;p&gt;Sea-level change is geographically non-uniform, with regional departures that can reach several times the global average. Characterizing this spatial variability and understanding its causes is crucial to the design of adaptation strategies for sea-level rise. This, as it turns out, is no easy feat, primarily due to the sparseness of the observational sea-level record in time and space. Long tide gauge records are restricted to a few locations along the coast. Satellite altimetry offers a better spatial coverage but only since 1992. In the Mediterranean Sea, the tide gauge network is heavily biased towards the European shorelines, with only one record with at least 35 years of data on the African coasts. Past studies have attempted to address the difficulties related to this data sparseness in the Mediterranean Sea by combining the available tide gauge records with satellite altimetry observations. The vast majority of such studies represent sea level through a combination of altimetry-derived empirical orthogonal functions whose temporal amplitudes are then inferred from the tide gauge data. Such methods, however, have tremendous difficulty in separating trends and variability, make no distinction between relative and geocentric sea level, and tell us nothing about the causes of sea level changes. Here, we combine observational data from tide gauges and altimetry with sea-level fingerprints of land-mass changes through a Bayesian hierarchical model to quanify the sources of sea-level rise since 1960 at any arbitrary location in the Mediterranean Sea. We find that Mediterranean sea level rose at a relatively low rate from 1960 to 1990, primarily due to dynamic sea-level changes in the nearby Atlantic, at which point it started rising significantly faster with comparable contributions from dynamic sea level and land-mass changes.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document