scholarly journals Monitoring the condition of Marine Renewable Energy Devices through underwater Acoustic Emissions: Case study of a Wave Energy Converter in Falmouth Bay, UK

2017 ◽  
Vol 102 ◽  
pp. 205-213 ◽  
Author(s):  
Jodi Walsh ◽  
Imran Bashir ◽  
Joanne K. Garrett ◽  
Philipp R. Thies ◽  
Philippe Blondel ◽  
...  
Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1249 ◽  
Author(s):  
Vasiliki Stratigaki

Growing energy demand has increased interest in marine renewable energy resources (i.e., wave energy, which is harvested through wave energy converter (WEC) arrays. However, the wave energy industry is currently at a significant juncture in its development, facing a number of challenges which require that research re-focuses on a holistic techno-economic perspective, where the economics considers the full life cycle costs of the technology. It also requires development of WECs suitable for niche markets, because in Europe there are inequalities regarding wave energy resources, wave energy companies, national programs and investments. As a result, in Europe there are leading and non-leading countries in wave energy technology. The sector also needs to increase confidence of potential investors by reducing (non-)technological risks. This can be achieved through an interdisciplinary approach by involving engineers, economists, environmental scientists, lawyers, regulators and policy experts. Consequently, the wave energy sector needs to receive the necessary attention compared to other more advanced and commercial offshore energy technologies (e.g., offshore wind). The formation of the first open pan-European network with an interdisciplinary approach will contribute to large-scale WEC array deployment by dealing with the current bottlenecks. The WECANet (Wave Energy Converter Array Network) European COST Action, introduced in September 2018 and presented in this paper, aims at a collaborative and inclusive approach, as it provides a strong networking and collaboration platform that also creates the space for dialogue between all stakeholders in wave energy. An important characteristic of the Action is that participation is open to all parties interested and active in the development of wave energy. Previous activities organised by WECANet core group members have resulted in a number of joint European projects and scientific publications. WECANet’s main target is the equal research, training, networking, collaboration and funding opportunities for all researchers and professionals, regardless of age, gender and country in order to obtain understanding of the main challenges governing the development of the wave energy sector.


2021 ◽  
Vol 9 (10) ◽  
pp. 1101
Author(s):  
Jinghui Li ◽  
Wei Shi ◽  
Lixian Zhang ◽  
Constantine Michailides ◽  
Xin Li

There is a huge energy demand from offshore renewable energy resources. To maximize the use of various renewable energy sources, a combined floating energy system consisting of different types of energy devices is an ideal option to reduce the levelized cost of energy (LCOE) by sharing the infrastructure of the platform and enhancing the power production capacity. This study proposed a combined concept of energy systems by combing a heave-type wave energy converter (WEC) with a semisubmersible floating wind turbine. In order to investigate the power performance and dynamic response of the combined concept, coupled aero-hydro-servo-elastic analysis was carried out using the open-source code F2A, which is based on the coupling of the FAST and AQWA tools by integrating all the possible environmental loadings (e.g., aerodynamic, hydrodynamic). Numerical results obtained by AQWA are used to verify the accuracy of the coupled model in F2A in predicting dynamic responses of the combined system. The main hydrodynamic characteristics of the combined system under typical operational conditions were examined, and the calculated responses (motions, mooring line tension and produced wave power) are discussed. Additionally, the effect of aerodynamic damping on the dynamic response of the combined system was examined and presented. Moreover, a second fully coupled analysis model was developed, and its response predictions were compared with the predictions of the model developed with F2A in order for the differences of the calculated responses resulted by the different modeling techniques to be discussed and explained. Finally, the survivability of the combined concept has been examined for different possible proposed survival modes.


Author(s):  
Pedro C. Vicente ◽  
Anto´nio F. O. Falca˜o ◽  
Paulo A. P. Justino

Floating point absorbers devices are a large class of wave energy converters for deployment offshore, typically in water depths between 40 and 100m. As floating oil and gas platforms, the devices are subject to drift forces due to waves, currents and wind, and therefore have to be kept in place by a proper mooring system. Although similarities can be found between the energy converting systems and floating platforms, the mooring design requirements will have some important differences between them, one of them associated to the fact that, in the case of a wave energy converter, the mooring connections may significantly modify its energy absorption properties by interacting with its oscillations. It is therefore important to examine what might be the more suitable mooring design for wave energy devices, according to the converters specifications. When defining a mooring system for a device, several initial parameters have to be established, such as cable material and thickness, distance to the mooring point on the bottom, and which can influence the device performance in terms of motion, power output and survivability. Different parameters, for which acceptable intervals can be established, will represent different power absorptions, displacements from equilibrium position, load demands on the moorings and of course also different costs. The work presented here analyzes what might be, for wave energy converter floating point absorber, the optimal mooring configuration parameters, respecting certain pre-established acceptable intervals and using a time-domain model that takes into account the non-linearities introduced by the mooring system. Numerical results for the mooring forces demands and also motions and absorbed power, are presented for two different mooring configurations for a system consisting of a hemispherical buoy in regular waves and assuming a liner PTO.


2013 ◽  
Vol 47 (4) ◽  
pp. 164-176 ◽  
Author(s):  
Terry Lettenmaier ◽  
Annette von Jouanne ◽  
Ean Amon ◽  
Sean Moran ◽  
Alister Gardiner

AbstractThis paper describes ocean testing of the half-scale Wave Energy Technology-New Zealand (WET-NZ) prototype wave energy converter (WEC) using the Ocean Sentinel instrumentation buoy during a 6-week deployment period in August‐October 2012. These tests were conducted by the Northwest National Marine Renewable Energy Center (NNMREC) at its Pacific Ocean test site off the coast of Newport, Oregon. The WET-NZ is the product of a research consortium between Callaghan Innovation, a New Zealand Crown Entity, and Power Projects Limited (PPL), a Wellington, New Zealand private company. The Oregon deployment was project managed by Northwest Energy Innovations (NWEI), a Portland, OR firm. NNMREC is a Department of Energy sponsored partnership between Oregon State University (OSU), the University of Washington (UW), and the National Renewable Energy Laboratory (NREL). The Ocean Sentinel instrumentation buoy is a 6-m surface buoy, developed in 2012, that provides a stand-alone electrical load, WEC generator control, and data collection for WECs being tested. The Ocean Sentinel was deployed and operated for the first time during the 2012 WET-NZ tests. During these tests, the operation of the WET-NZ was demonstrated and its performance was characterized, while also proving successful deployment and operation of the Ocean Sentinel.


Energy ◽  
2017 ◽  
Vol 135 ◽  
pp. 303-316 ◽  
Author(s):  
V. Ramos ◽  
M. López ◽  
F. Taveira-Pinto ◽  
P. Rosa-Santos

Fluids ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 99 ◽  
Author(s):  
Alexandros Magkouris ◽  
Markos Bonovas ◽  
Kostas Belibassakis

A variety of devices and concepts have been proposed and thoroughly investigated for the exploitation of renewable wave energy. Many of the devices operate in nearshore and coastal regions, and thus, variable bathymetry could have significant effects on their performance. In particular, Oscillating Wave Surge Converters (OWSCs) exploit the horizontal motion of water waves interacting with the flap of the device. In this work, a Boundary Element Method (BEM) is developed, and applied to the investigation of variable bathymetry effects on the performance of a simplified 2D model of a surge-type wave energy converter excited by harmonic incident waves. Numerical results, illustrating the effects of depth variation in conjunction with other parameters, like inertia and power-take-off, on the performance of the device, are presented. Finally, a comparative evaluation of the present simplified surge-type WEC model and point absorbers is presented for a case study in a selected coastal site on the Greek nearshore area, characterized by relatively increased wave energy potential.


2021 ◽  
Vol 9 (5) ◽  
pp. 490
Author(s):  
Erfan Amini ◽  
Danial Golbaz ◽  
Rojin Asadi ◽  
Mahdieh Nasiri ◽  
Oğuzhan Ceylan ◽  
...  

One of the most encouraging sorts of renewable energy is ocean wave energy. In spite of a large number of investigations in this field during the last decade, wave energy technologies are recognised as neither mature nor broadly commercialised compared to other renewable energy technologies. In this paper, we develop and optimise Power Take-off (PTO) configurations of a well-known wave energy converter (WEC) called a point absorber. This WEC is a fully submerged buoy with three tethers, which was proposed and developed by Carnegie Clean Energy Company in Australia. Optimising the WEC’s PTO parameters is a challenging engineering problem due to the high dimensionality and complexity of the search space. This research compares the performance of five state-of-the-art metaheuristics (including Covariance Matrix Adaptation Evolution Strategy, Gray Wolf optimiser, Harris Hawks optimisation, and Grasshopper Optimisation Algorithm) based on the real wave scenario in Sydney sea state. The experimental achievements show that the Multiverse optimisation (MVO) algorithm performs better than the other metaheuristics applied in this work.


2020 ◽  
Author(s):  
Ann Dallman ◽  
Mohammad Khalil ◽  
Kaus Raghukumar ◽  
Craig Jones ◽  
Jeremy Kasper ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document